Backward difference time discretization of parabolic differential equations on evolving surfaces

被引:63
|
作者
Lubich, Christian [1 ]
Mansour, Dhia [1 ]
Venkataraman, Chandrasekhar [2 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
[2] Univ Sussex, Dept Math, Falmer BN1 9QH, England
基金
英国工程与自然科学研究理事会;
关键词
parabolic PDE; evolving-surface finite element method; backward difference formula; G-stability; multiplier technique; energy estimates;
D O I
10.1093/imanum/drs044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear parabolic differential equation on a moving surface is discretized in space by evolving-surface finite elements and in time by backward difference formulas (BDFs). Using results from Dahlquist's G-stability theory and Nevanlinna & Odeh's multiplier technique together with properties of the spatial semidiscretization, stability of the full discretization is proved for BDF methods up to order 5 and optimal-order convergence is shown. Numerical experiments illustrate the behaviour of the fully discrete method.
引用
收藏
页码:1365 / 1385
页数:21
相关论文
共 50 条
  • [41] On the Time Discretization of the Feynman-Kac Forward-Backward Stochastic Differential Equations for Value Function Approximation
    Hawkins, Kelsey P.
    Pakniyat, Ali
    Tsiotras, Panagiotis
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 892 - 897
  • [42] A mild approach to spatial discretization for backward stochastic differential equations in infinite dimensions
    Abidi, Hani
    Oualaid, Abdelkarim
    Ouknine, Youssef
    Pettersson, Roger
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2024, 42 (01) : 98 - 120
  • [43] SEMI-DISCRETIZATION IN TIME FOR PARABOLIC EQUATIONS WITH TIME-DEPENDENT OPERATOR
    LEROUX, MN
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1979, 13 (02): : 119 - 137
  • [44] Systems of quasilinear parabolic equations in Rn and systems of quadratic backward stochastic differential equations
    Bensoussan, Alain
    Frehse, Jens
    Yam, Sheung Chi Phillip
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 135 - 185
  • [45] Stability results for backward time-fractional parabolic equations
    Dinh Nho Hao
    Liu, Jijun
    Nguyen Van Duc
    Nguyen Van Thang
    INVERSE PROBLEMS, 2019, 35 (12)
  • [46] Forward-backward stochastic differential equations and quasilinear parabolic PDEs
    Pardoux, E
    Tang, SJ
    PROBABILITY THEORY AND RELATED FIELDS, 1999, 114 (02) : 123 - 150
  • [47] Backward uniqueness for parabolic equations
    Escauriaza, L
    Seregin, G
    Sverak, V
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (02) : 147 - 157
  • [48] Forward-backward parabolic equations and their time delay approximations
    Horstmann, D
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 1089 - 1091
  • [49] Forward-backward stochastic differential equations and quasilinear parabolic PDEs
    Etienne Pardoux
    Shanjian Tang
    Probability Theory and Related Fields, 1999, 114 : 123 - 150
  • [50] Backward Uniqueness for Parabolic Equations
    L. Escauriaza
    G. Seregin
    V. Šverák
    Archive for Rational Mechanics and Analysis, 2003, 169 : 147 - 157