Stability results for backward time-fractional parabolic equations

被引:24
|
作者
Dinh Nho Hao [1 ]
Liu, Jijun [2 ]
Nguyen Van Duc [3 ]
Nguyen Van Thang [3 ]
机构
[1] VAST, Hanoi Inst Math, 18 Hoang Quoc Viet Rd, Hanoi 10307, Vietnam
[2] Southeast Univ, ST Yau Ctr, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[3] Vinh Univ, Dept Math, Vinh City, Vietnam
关键词
backward time-fractional parabolic equations; stability estimates; non-local boundary value problem method; BOUNDARY VALUE METHOD; REGULARIZATION;
D O I
10.1088/1361-6420/ab45d3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal order stability estimates of Hlder type for the backward Caputo time-fractional abstract parabolic equations are obtained. This ill-posed problem is regularized by a non-local boundary value problem method with a priori and a posteriori parameter choice rules which guarantee error estimates of Hlder type. Numerical implementations are presented to show the validity of the proposed scheme.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] ON THE EXISTENCE, UNIQUENESS AND STABILITY RESULTS FOR TIME-FRACTIONAL PARABOLIC INTEGRODIFFERENTIAL EQUATIONS
    Mahata, Shantiram
    Sinha, Rajen Kumar
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2020, 32 (04) : 457 - 477
  • [2] The backward problem for time-fractional evolution equations
    Chorfi, S. E.
    Maniar, L.
    Yamamoto, M.
    APPLICABLE ANALYSIS, 2024, 103 (12) : 2194 - 2212
  • [3] Variational formulation of time-fractional parabolic equations
    Karkulik, Michael
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (11) : 3929 - 3938
  • [4] Stability results for backward parabolic equations with time-dependent coefficients
    Dinh Nho Hao
    Nguyen Van Duc
    INVERSE PROBLEMS, 2011, 27 (02)
  • [5] Stability Results for Semi-linear Parabolic Equations Backward in Time
    Van Duc N.
    Van Thang N.
    Acta Mathematica Vietnamica, 2017, 42 (1) : 99 - 111
  • [6] On a backward problem for inhomogeneous time-fractional diffusion equations
    Nguyen Hoang Luc
    Le Nhat Huynh
    Nguyen Huy Tuan
    Le Dinh Long
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1317 - 1333
  • [7] Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay
    Hendy, Ahmed S.
    Pimenov, Vladimir G.
    Macias-Diaz, Jorge E.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (01) : 118 - 132
  • [8] On the Stability of Time-Fractional Schrodinger Differential Equations
    Hicdurmaz, B.
    Ashyralyev, A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (10) : 1215 - 1225
  • [9] Almost Automorphic Strong Oscillation in Time-Fractional Parabolic Equations
    Zhang, Tianwei
    Li, Yongkun
    Zhou, Jianwen
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [10] SEMILINEAR CAPUTO TIME-FRACTIONAL PSEUDO-PARABOLIC EQUATIONS
    Nguyen Huy Tuan
    Vo Van Au
    Xu, Runzhang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (02) : 583 - 621