Stability results for backward time-fractional parabolic equations

被引:24
|
作者
Dinh Nho Hao [1 ]
Liu, Jijun [2 ]
Nguyen Van Duc [3 ]
Nguyen Van Thang [3 ]
机构
[1] VAST, Hanoi Inst Math, 18 Hoang Quoc Viet Rd, Hanoi 10307, Vietnam
[2] Southeast Univ, ST Yau Ctr, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[3] Vinh Univ, Dept Math, Vinh City, Vietnam
关键词
backward time-fractional parabolic equations; stability estimates; non-local boundary value problem method; BOUNDARY VALUE METHOD; REGULARIZATION;
D O I
10.1088/1361-6420/ab45d3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal order stability estimates of Hlder type for the backward Caputo time-fractional abstract parabolic equations are obtained. This ill-posed problem is regularized by a non-local boundary value problem method with a priori and a posteriori parameter choice rules which guarantee error estimates of Hlder type. Numerical implementations are presented to show the validity of the proposed scheme.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Two-grid finite element methods for nonlinear time-fractional parabolic equations
    Jie Zhou
    Xing Yao
    Wansheng Wang
    Numerical Algorithms, 2022, 90 : 709 - 730
  • [32] On the critical behavior for time-fractional pseudo-parabolic-type equations with combined nonlinearities
    Areej Bin Sultan
    Mohamed Jleli
    Bessem Samet
    Calogero Vetro
    Boundary Value Problems, 2022
  • [33] On time-fractional relativistic diffusion equations
    Narn-Rueih Shieh
    Journal of Pseudo-Differential Operators and Applications, 2012, 3 : 229 - 237
  • [34] On a class of time-fractional differential equations
    Cheng-Gang Li
    Marko Kostić
    Miao Li
    Sergey Piskarev
    Fractional Calculus and Applied Analysis, 2012, 15 : 639 - 668
  • [35] Nonlinear time-fractional dispersive equations
    Harris, Piero Artale
    Garra, Roberto
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2015, 6 (01)
  • [36] On a class of time-fractional differential equations
    Li, Cheng-Gang
    Kostic, Marko
    Li, Miao
    Piskarev, Sergey
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 639 - 668
  • [37] A Mollification Method for Backward Time-Fractional Heat Equation
    Nguyen Van Duc
    Pham Quy Muoi
    Nguyen Van Thang
    Acta Mathematica Vietnamica, 2020, 45 : 749 - 766
  • [38] An Iterative Method for Backward Time-Fractional Diffusion Problem
    Wang, Jun-Gang
    Wei, Ting
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (06) : 2029 - 2041
  • [39] On time-fractional relativistic diffusion equations
    Shieh, Narn-Rueih
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (02) : 229 - 237
  • [40] SYSTEMS OF ABSTRACT TIME-FRACTIONAL EQUATIONS
    Kostic, Marko
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 95 (109): : 119 - 132