Backward difference time discretization of parabolic differential equations on evolving surfaces

被引:63
|
作者
Lubich, Christian [1 ]
Mansour, Dhia [1 ]
Venkataraman, Chandrasekhar [2 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
[2] Univ Sussex, Dept Math, Falmer BN1 9QH, England
基金
英国工程与自然科学研究理事会;
关键词
parabolic PDE; evolving-surface finite element method; backward difference formula; G-stability; multiplier technique; energy estimates;
D O I
10.1093/imanum/drs044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear parabolic differential equation on a moving surface is discretized in space by evolving-surface finite elements and in time by backward difference formulas (BDFs). Using results from Dahlquist's G-stability theory and Nevanlinna & Odeh's multiplier technique together with properties of the spatial semidiscretization, stability of the full discretization is proved for BDF methods up to order 5 and optimal-order convergence is shown. Numerical experiments illustrate the behaviour of the fully discrete method.
引用
收藏
页码:1365 / 1385
页数:21
相关论文
共 50 条