Robust adaptive model predictive control: Performance and parameter estimation

被引:20
|
作者
Lu, Xiaonan [1 ]
Cannon, Mark [1 ]
Koksal-Rivet, Denis [2 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
adaptive control; input-to-state stability; parameter set estimation; receding horizon control; uncertain linear systems; COMPLEXITY; STABILITY;
D O I
10.1002/rnc.5175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For systems with uncertain linear models, bounded additive disturbances and state and control constraints, a robust model predictive control (MPC) algorithm incorporating online model adaptation is proposed. Sets of model parameters are identified online and employed in a robust tube MPC strategy with a nominal cost. The algorithm is shown to be recursively feasible and input-to-state stable. Computational tractability is ensured by using polytopic sets of fixed complexity to bound parameter sets and predicted states. Convex conditions for persistence of excitation are derived and are related to probabilistic rates of convergence and asymptotic bounds on parameter set estimates. We discuss how to balance conflicting requirements on control signals for achieving good tracking performance and parameter set estimate accuracy. Conditions for convergence of the estimated parameter set are discussed for the case of fixed complexity parameter set estimates, inexact disturbance bounds, and noisy measurements.
引用
收藏
页码:8703 / 8724
页数:22
相关论文
共 50 条
  • [31] A Youla Parameter Approach to Robust Constrained Linear Model Predictive Control
    Cheng, Qifeng
    Kouvaritakis, Basil
    Cannon, Mark
    Rossiter, J. Anthony
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 2771 - 2776
  • [32] Robust Model Predictive Control Based on Stabilizing Parameter Space Calculus
    Mutlu, Ilhan
    Oravec, Juraj
    Schroedel, Frank
    Vosswinkel, Rick
    Bakosova, Monika
    Soylemez, Mehmet Turan
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 206 - 212
  • [33] Robust adaptive parameter estimation of sinusoidal signals
    Na, Jing
    Yang, Juan
    Wu, Xing
    Guo, Yu
    AUTOMATICA, 2015, 53 : 376 - 384
  • [34] Robust Adaptive Finite-time Parameter Estimation and Control of Nonlinear Systems
    Na, Jing
    Herrmann, Guido
    Ren, Xuemei
    Mahyuddin, Muhammad Nasiruddin
    Barber, Phil
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2011, : 1014 - 1019
  • [35] Robust adaptive finite-time parameter estimation and control for robotic systems
    Na, Jing
    Mahyuddin, Muhammad Nasiruddin
    Herrmann, Guido
    Ren, Xuemei
    Barber, Phil
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 25 (16) : 3045 - 3071
  • [36] Robust control of robot manipulators with an adaptive fuzzy unmodelled parameter estimation law
    Burkan, Recep
    Mutlu, Askin
    ROBOTICA, 2022, 40 (07) : 2365 - 2380
  • [37] Robust Adaptive Control for Robotic System with External Disturbance and Guaranteed Parameter Estimation
    Huang, Yichi
    Liu, Jiajia
    Zhu, Shiqiang
    Huang, Fanghao
    Chen, Zheng
    IFAC PAPERSONLINE, 2022, 55 (38): : 178 - 183
  • [38] Robust adaptive control and parameter estimation using multi objective evolutionary algorithm
    Alighanbari, M
    Homaifar, A
    Sayarrodsari, B
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 1326 - 1333
  • [39] Adaptive Prescribed Performance Tuning for Model Predictive Control
    Wang, Junjie
    Zhu, Xuetian
    Pei, Yushan
    Wang, Di
    Shen, Qi
    Niu, Yingyi
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1523 - 1529
  • [40] Parameter estimation and model reduction for model predictive control in retinal laser treatment
    Schaller, Manuel
    Wilson, Mitsuru
    Kleyman, Viktoria
    Mordmueller, Mario
    Brinkmann, Ralf
    Mueller, Matthias A.
    Worthmann, Karl
    CONTROL ENGINEERING PRACTICE, 2022, 128