Robust adaptive model predictive control: Performance and parameter estimation

被引:20
|
作者
Lu, Xiaonan [1 ]
Cannon, Mark [1 ]
Koksal-Rivet, Denis [2 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
adaptive control; input-to-state stability; parameter set estimation; receding horizon control; uncertain linear systems; COMPLEXITY; STABILITY;
D O I
10.1002/rnc.5175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For systems with uncertain linear models, bounded additive disturbances and state and control constraints, a robust model predictive control (MPC) algorithm incorporating online model adaptation is proposed. Sets of model parameters are identified online and employed in a robust tube MPC strategy with a nominal cost. The algorithm is shown to be recursively feasible and input-to-state stable. Computational tractability is ensured by using polytopic sets of fixed complexity to bound parameter sets and predicted states. Convex conditions for persistence of excitation are derived and are related to probabilistic rates of convergence and asymptotic bounds on parameter set estimates. We discuss how to balance conflicting requirements on control signals for achieving good tracking performance and parameter set estimate accuracy. Conditions for convergence of the estimated parameter set are discussed for the case of fixed complexity parameter set estimates, inexact disturbance bounds, and noisy measurements.
引用
收藏
页码:8703 / 8724
页数:22
相关论文
共 50 条
  • [21] Sensorless Predictive Control of AFE Rectifier With Robust Adaptive Inductance Estimation
    Mehreganfar, Mohammad
    Saeedinia, Mohammad Hosein
    Davari, S. Alireza
    Garcia, Cristian
    Rodriguez, Jose
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (06) : 3420 - 3431
  • [22] Adaptive parameter estimation-based predictive multi-model switching control of drainage systems
    He, Zhongjie
    Wang, Xionghai
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 6540 - +
  • [23] Studies on parameter estimation and model predictive control of paste thickeners
    Tan, Chee Keong
    Setiawan, Ridwan
    Bao, Jie
    Bickert, Goetz
    JOURNAL OF PROCESS CONTROL, 2015, 28 : 1 - 8
  • [24] Adaptive Robust Model Predictive Control with Matched and Unmatched Uncertainty
    Sinha, Rohan
    Harrison, James
    Richards, Spencer M.
    Pavone, Marco
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 906 - 913
  • [25] Robust adaptive model predictive control with persistent excitation conditions
    Lu, Xiaonan
    Cannon, Mark
    AUTOMATICA, 2023, 152
  • [26] Bayesian Optimisation for Robust Model Predictive Control under Model Parameter Uncertainty
    Guzman, Rel
    Oliveira, Rafael
    Ramos, Fabio
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 5539 - 5545
  • [27] Performance assessment for robust model predictive control systems
    Zhang, Xuelian
    Hu, Lisheng
    Cao, Guangyi
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2008, 59 (07): : 1859 - 1862
  • [28] Recurrent Neural Network-Based Robust Adaptive Model Predictive Speed Control for PMSM With Parameter Mismatch
    Nguyen, Ty Trung
    Tran, Hoang Ngoc
    Nguyen, Ton Hoang
    Jeon, Jae Wook
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (06) : 6219 - 6228
  • [29] Robust stability constrained model predictive control with state estimation
    Cheng, Xu
    Jia, Dong
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 1581 - +
  • [30] Robust Model Predictive Control for PMSM Drives Against Parameter Mismatch
    Shao, Luwei
    Shen, Wei
    Li, Fan
    Ge, Chuanyu
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2842 - 2847