Robust adaptive finite-time parameter estimation and control for robotic systems

被引:286
|
作者
Na, Jing [1 ]
Mahyuddin, Muhammad Nasiruddin [2 ]
Herrmann, Guido [2 ]
Ren, Xuemei [3 ]
Barber, Phil [4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650500, Peoples R China
[2] Univ Bristol, Dept Mech Engn, Bristol BS8 1TR, Avon, England
[3] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[4] Land Rover Cars Ltd, Coventry CV3 4LF, W Midlands, England
基金
中国国家自然科学基金;
关键词
adaptive control; parameter estimation; robotic systems; terminal sliding mode control; finite-time convergence; NEURAL-NETWORK CONTROL; SLIDING MODE CONTROL; CONTROL DESIGN; CONVERGENCE; MANIPULATORS;
D O I
10.1002/rnc.3247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies adaptive parameter estimation and control for nonlinear robotic systems based on parameter estimation errors. A framework to obtain an expression of the parameter estimation error is proposed first by introducing a set of auxiliary filtered variables. Then three novel adaptive laws driven by the estimation error are presented, where exponential error convergence is proved under the conventional persistent excitation (PE) condition; the direct measurement of the time derivatives of the system states are avoided. The adaptive laws are modified via a sliding mode technique to achieve finite-time convergence, and an online verification of the alternative PE condition is introduced. Leakage terms, functions of the estimation error, are incorporated into the adaptation laws to avoid windup of the adaptation algorithms. The adaptive algorithm applied to robotic systems permits that tracking control and exact parameter estimation are achieved simultaneously in finite time using a terminal sliding mode (TSM) control law. In this case, the PE condition can be replaced with a sufficient richness requirement of the command signals and thus is verifiable a priori. The potential singularity problem encountered in TSM controls is remedied by introducing a two-phase control procedure. The robustness of the proposed methods against disturbances is investigated. Simulations based on the Bristol-Elumotion-Robotic-Torso II' (BERT II) are provided to validate the efficacy of the introduced methods. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:3045 / 3071
页数:27
相关论文
共 50 条
  • [1] Adaptive Finite-Time Parameter Estimation and Control for Constrained Robotic Systems
    Zhao, Licui
    Zhang, Yu
    Pang, Keli
    Hua, Changchun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [2] Robust Adaptive Finite-time Parameter Estimation and Control of Nonlinear Systems
    Na, Jing
    Herrmann, Guido
    Ren, Xuemei
    Mahyuddin, Muhammad Nasiruddin
    Barber, Phil
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2011, : 1014 - 1019
  • [3] Finite-time parameter estimation in adaptive control of nonlinear systems
    Adetola, Veronica
    Guay, Martin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (03) : 807 - 811
  • [4] Finite-time parameter estimation in adaptive control of nonlinear systems
    Adetola, Veronica
    Guay, Martin
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 5429 - 5433
  • [5] Robust Adaptive Finite-Time Parameter Estimation for Linearly Parameterized Nonlinear Systems
    Na, Jing
    Mahyuddin, Muhammad Nasiruddin
    Herrmann, Guido
    Ren, Xuemei
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 1735 - 1741
  • [6] Robust Adaptive Finite-Time Parameter Estimation for Nonlinearly Parameterized Nonlinear Systems
    Luan, Fujin
    Na, Jing
    Yang, Jun
    Gao, Guanbin
    Zhu, Quanmin
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1622 - 1627
  • [7] Robust Adaptive Safety-Critical Control for Unknown Systems With Finite-Time Elementwise Parameter Estimation
    Wang, Shengbo
    Lyu, Bo
    Wen, Shiping
    Shi, Kaibo
    Zhu, Song
    Huang, Tingwen
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (03): : 1607 - 1617
  • [8] Robust Finite-Time Parameter Estimation for Linear Dynamical Systems
    Johnson, Ryan S.
    Saoud, Adnane
    Sanfelice, Ricardo G.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4654 - 4659
  • [9] Robust Adaptive Control for Robotic Systems with Guaranteed Parameter Estimation
    Jing, Baorui
    Na, Jing
    Gao, Guanbin
    Sun, Guoqing
    PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT SYSTEMS CONFERENCE, VOL 1, 2016, 359 : 341 - 352
  • [10] Robust Finite-Time Tracking Control for Robotic Manipulators with Time Delay Estimation
    Zhang, Tie
    Zhang, Aimin
    MATHEMATICS, 2020, 8 (02)