Zero-inflated sum of Conway-Maxwell-Poissons (ZISCMP) regression
被引:12
|
作者:
Sellers, Kimberly F.
论文数: 0引用数: 0
h-index: 0
机构:
Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
US Census Bur, Ctr Stat Res & Methodol, Washington, DC 20233 USAGeorgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
Sellers, Kimberly F.
[1
,2
]
Young, Derek S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kentucky, Dept Stat, Lexington, KY USAGeorgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
Young, Derek S.
[3
]
机构:
[1] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[2] US Census Bur, Ctr Stat Res & Methodol, Washington, DC 20233 USA
While excess zeros are often thought to cause data over-dispersion (i.e. when the variance exceeds the mean), this implication is not absolute. One should instead consider a flexible class of distributions that can address data dispersion along with excess zeros. This work develops a zero-inflated sum-of-Conway-Maxwell-Poissons (ZISCMP) regression as a flexible analysis tool to model count data that express significant data dispersion and contain excess zeros. This class of models contains several special case zero-inflated regressions, including zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated binomial (ZIB), and the zero-inflated Conway-Maxwell-Poisson (ZICMP). Through simulated and real data examples, we demonstrate class flexibility and usefulness. We further utilize it to analyze shark species data from Australia's Great Barrier Reef to assess the environmental impact of human action on the number of various species of sharks.
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Lim, Hwa Kyung
Li, Wai Keung
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Li, Wai Keung
Yu, Philip L. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China