Zero-inflated sum of Conway-Maxwell-Poissons (ZISCMP) regression

被引:12
|
作者
Sellers, Kimberly F. [1 ,2 ]
Young, Derek S. [3 ]
机构
[1] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[2] US Census Bur, Ctr Stat Res & Methodol, Washington, DC 20233 USA
[3] Univ Kentucky, Dept Stat, Lexington, KY USA
基金
美国国家科学基金会;
关键词
Count data modelling; discrete data; over-dispersion; under-dispersion; zero-inflated negative binomial; zero-inflated Poisson; COUNT DATA; MODEL;
D O I
10.1080/00949655.2019.1590580
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
While excess zeros are often thought to cause data over-dispersion (i.e. when the variance exceeds the mean), this implication is not absolute. One should instead consider a flexible class of distributions that can address data dispersion along with excess zeros. This work develops a zero-inflated sum-of-Conway-Maxwell-Poissons (ZISCMP) regression as a flexible analysis tool to model count data that express significant data dispersion and contain excess zeros. This class of models contains several special case zero-inflated regressions, including zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated binomial (ZIB), and the zero-inflated Conway-Maxwell-Poisson (ZICMP). Through simulated and real data examples, we demonstrate class flexibility and usefulness. We further utilize it to analyze shark species data from Australia's Great Barrier Reef to assess the environmental impact of human action on the number of various species of sharks.
引用
收藏
页码:1649 / 1673
页数:25
相关论文
共 50 条
  • [11] Score test for testing zero-inflated Poisson regression against zero-inflated generalized Poisson alternatives
    Zamani, Hossein
    Ismail, Noriszura
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (09) : 2056 - 2068
  • [12] Zero-Inflated Beta Distribution Regression Modeling
    Tang, Becky
    Frye, Henry A.
    Gelfand, Alan E.
    Silander, John A.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2023, 28 (01) : 117 - 137
  • [13] Marginalized zero-inflated generalized Poisson regression
    Famoye, Felix
    Preisser, John S.
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (07) : 1247 - 1259
  • [14] A Zero-Inflated Regression Model for Grouped Data
    Brown, Sarah
    Duncan, Alan
    Harris, Mark N.
    Roberts, Jennifer
    Taylor, Karl
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2015, 77 (06) : 822 - 831
  • [15] Bayesian Analysis for the Zero-inflated Regression Models
    Jane, Hakjin
    Kang, Yunhee
    Lee, S.
    Kim, Seong W.
    KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (04) : 603 - 613
  • [16] Zero-inflated Poisson regression mixture model
    Lim, Hwa Kyung
    Li, Wai Keung
    Yu, Philip L. H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 151 - 158
  • [17] Zero-Inflated Beta Distribution Regression Modeling
    Becky Tang
    Henry A. Frye
    Alan E. Gelfand
    John A. Silander
    Journal of Agricultural, Biological and Environmental Statistics, 2023, 28 : 117 - 137
  • [18] Robust Estimation for Zero-Inflated Poisson Regression
    Hall, Daniel B.
    Shen, Jing
    SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (02) : 237 - 252
  • [19] Zero-Inflated Poisson Regression for Longitudinal Data
    Hasan, M. Tariqul
    Sneddon, Gary
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (03) : 638 - 653
  • [20] Zero-inflated multivariate tobit regression modeling
    Tang, Becky
    Frye, Henry A.
    Silander Jr, John A.
    Gelfand, Alan E.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2025, 236