Zero-inflated sum of Conway-Maxwell-Poissons (ZISCMP) regression

被引:12
|
作者
Sellers, Kimberly F. [1 ,2 ]
Young, Derek S. [3 ]
机构
[1] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[2] US Census Bur, Ctr Stat Res & Methodol, Washington, DC 20233 USA
[3] Univ Kentucky, Dept Stat, Lexington, KY USA
基金
美国国家科学基金会;
关键词
Count data modelling; discrete data; over-dispersion; under-dispersion; zero-inflated negative binomial; zero-inflated Poisson; COUNT DATA; MODEL;
D O I
10.1080/00949655.2019.1590580
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
While excess zeros are often thought to cause data over-dispersion (i.e. when the variance exceeds the mean), this implication is not absolute. One should instead consider a flexible class of distributions that can address data dispersion along with excess zeros. This work develops a zero-inflated sum-of-Conway-Maxwell-Poissons (ZISCMP) regression as a flexible analysis tool to model count data that express significant data dispersion and contain excess zeros. This class of models contains several special case zero-inflated regressions, including zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated binomial (ZIB), and the zero-inflated Conway-Maxwell-Poisson (ZICMP). Through simulated and real data examples, we demonstrate class flexibility and usefulness. We further utilize it to analyze shark species data from Australia's Great Barrier Reef to assess the environmental impact of human action on the number of various species of sharks.
引用
收藏
页码:1649 / 1673
页数:25
相关论文
共 50 条
  • [31] STATISTICAL INFERENCE IN QUANTILE REGRESSION FOR ZERO-INFLATED OUTCOMES
    Ling, Wodan
    Cheng, Bin
    Wei, Ying
    Willey, Joshua
    Cheung, Ying Kuen
    STATISTICA SINICA, 2022, 32 (03) : 1411 - 1433
  • [32] Marginal zero-inflated regression models for count data
    Martin, Jacob
    Hall, Daniel B.
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (10) : 1807 - 1826
  • [33] Model selection for zero-inflated regression with missing covariates
    Chen, Xue-Dong
    Fu, Ying-Zi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 765 - 773
  • [34] Estimation of mediation effects for zero-inflated regression models
    Wang, Wei
    Albert, Jeffrey M.
    STATISTICS IN MEDICINE, 2012, 31 (26) : 3118 - 3132
  • [35] A Note on the Adaptive LASSO for Zero-Inflated Poisson Regression
    Banerjee, Prithish
    Garai, Broti
    Mallick, Himel
    Chowdhury, Shrabanti
    Chatterjee, Saptarshi
    JOURNAL OF PROBABILITY AND STATISTICS, 2018, 2018
  • [36] A new zero-inflated discrete Lindley regression model
    Tanis, Caner
    Koc, Haydar
    Pekgor, Ahmet
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (12) : 4252 - 4271
  • [37] Statistical Inference in a Zero-Inflated Bell Regression Model
    Essoham Ali
    Mamadou Lamine Diop
    Aliou Diop
    Mathematical Methods of Statistics, 2022, 31 : 91 - 104
  • [38] Estimation in zero-inflated binomial regression with missing covariates
    Diallo, Alpha Oumar
    Diop, Aliou
    Dupuy, Jean-Francois
    STATISTICS, 2019, 53 (04) : 839 - 865
  • [39] Zero-inflated Bell regression models for count data
    Lemonte, Artur J.
    Moreno-Arenas, German
    Castellares, Fredy
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (02) : 265 - 286
  • [40] Statistical Inference in a Zero-Inflated Bell Regression Model
    Ali, Essoham
    Diop, Mamadou Lamine
    Diop, Aliou
    MATHEMATICAL METHODS OF STATISTICS, 2022, 31 (03) : 91 - 104