The Induced Removal Lemma in Sparse Graphs

被引:1
|
作者
Sapir, Shachar [1 ]
Shapira, Asaf [1 ]
机构
[1] Tel Aviv Univ, Sch Math, IL-69978 Tel Aviv, Israel
来源
COMBINATORICS PROBABILITY & COMPUTING | 2020年 / 29卷 / 01期
基金
欧洲研究理事会;
关键词
05D99; REGULARITY; BOUNDS;
D O I
10.1017/S0963548319000233
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The induced removal lemma of Alon, Fischer, Krivelevich and Szegedy states that if ann-vertex graphGis epsilon-far from being inducedH-free thenGcontains delta(H)(epsilon) center dot n(h)induced copies ofH. Improving upon the original proof, Conlon and Fox proved that 1/delta(H)(epsilon)is at most a tower of height poly(1/epsilon), and asked if this bound can be further improved to a tower of height log(1/epsilon). In this paper we obtain such a bound for graphsGof densityO(epsilon). We actually prove a more general result, which, as a special case, also gives a new proof of Fox's bound for the (non-induced) removal lemma.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [31] SPARSE RAMSEY GRAPHS
    NESETRIL, J
    RODL, V
    COMBINATORICA, 1984, 4 (01) : 71 - 78
  • [32] SPARSE EIGENVECTORS OF GRAPHS
    Teke, Oguzhan
    Vaidyanathan, P. P.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3904 - 3908
  • [33] Sparse universal graphs
    Alon, N
    Asodi, V
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (01) : 1 - 11
  • [34] Spanners in sparse graphs
    Dragan, Feodor F.
    Fomin, Fedor V.
    Golovach, Petr A.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (06) : 1108 - 1119
  • [35] SPARSE BROADCAST GRAPHS
    BERMOND, JC
    HELL, P
    LIESTMAN, AL
    PETERS, JG
    DISCRETE APPLIED MATHEMATICS, 1992, 36 (02) : 97 - 130
  • [36] The sparse sequences of graphs
    Sumin Huang
    Jianguo Qian
    Graphs and Combinatorics, 2024, 40 (6)
  • [37] A Pumping Lemma for Pushdown Graphs of Any Level
    Parys, Pawel
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 54 - 65
  • [38] A convexity lemma and expansion procedures for bipartite graphs
    Imrich, W
    Klavzar, S
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (06) : 677 - 685
  • [39] A combinatorial proof of the Removal Lemma for Groups
    Kral, Daniel
    Serra, Oriol
    Vena, Lluis
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (04) : 971 - 978
  • [40] An Efficient Algorithm for Enumerating Chordal Bipartite Induced Subgraphs in Sparse Graphs
    Kurita, Kazuhiro
    Wasa, Kunihiro
    Uno, Takeaki
    Arimura, Hiroki
    COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 339 - 351