The Induced Removal Lemma in Sparse Graphs

被引:1
|
作者
Sapir, Shachar [1 ]
Shapira, Asaf [1 ]
机构
[1] Tel Aviv Univ, Sch Math, IL-69978 Tel Aviv, Israel
来源
COMBINATORICS PROBABILITY & COMPUTING | 2020年 / 29卷 / 01期
基金
欧洲研究理事会;
关键词
05D99; REGULARITY; BOUNDS;
D O I
10.1017/S0963548319000233
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The induced removal lemma of Alon, Fischer, Krivelevich and Szegedy states that if ann-vertex graphGis epsilon-far from being inducedH-free thenGcontains delta(H)(epsilon) center dot n(h)induced copies ofH. Improving upon the original proof, Conlon and Fox proved that 1/delta(H)(epsilon)is at most a tower of height poly(1/epsilon), and asked if this bound can be further improved to a tower of height log(1/epsilon). In this paper we obtain such a bound for graphsGof densityO(epsilon). We actually prove a more general result, which, as a special case, also gives a new proof of Fox's bound for the (non-induced) removal lemma.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [21] A probabilistic counting lemma for complete graphs
    Gerke, Stefanie
    Marciniszyn, Martin
    Steger, Angelika
    RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (04) : 517 - 534
  • [22] CONSEQUENCES OF KELLYS LEMMA IN RECONSTRUCTING GRAPHS
    HEMMINGE.RL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 559 - &
  • [23] A variant of the hypergraph removal lemma
    Tao, Terence
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1257 - 1280
  • [24] THE SYMMETRY PRESERVING REMOVAL LEMMA
    Szegedy, Balazs
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (02) : 405 - 408
  • [25] Induced subgraphs in sparse random graphs with given degree sequences
    Gao, Pu
    Su, Yi
    Wormald, Nicholas
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (06) : 1142 - 1166
  • [26] Sparse induced subgraphs in P6-free graphs
    Chudnovsky, Maria
    McCarty, Rose
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Rzazewski, Pawel
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 5291 - 5299
  • [27] Girth of sparse graphs
    Bollobás, B
    Szemerédi, E
    JOURNAL OF GRAPH THEORY, 2002, 39 (03) : 194 - 200
  • [28] Reconfiguration on sparse graphs
    Lokshtanov, Daniel
    Mouawad, Amer E.
    Panolan, Fahad
    Ramanujan, M. S.
    Saurabh, Saket
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2018, 95 : 122 - 131
  • [29] Spanners in sparse graphs
    Dragan, Feodor F.
    Fomin, Fedor V.
    Golovach, Petr A.
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 597 - +
  • [30] SPARSE GRAPHS ARE NOT FLAMMABLE
    Pralat, Pawel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 2157 - 2166