The Induced Removal Lemma in Sparse Graphs

被引:1
|
作者
Sapir, Shachar [1 ]
Shapira, Asaf [1 ]
机构
[1] Tel Aviv Univ, Sch Math, IL-69978 Tel Aviv, Israel
来源
COMBINATORICS PROBABILITY & COMPUTING | 2020年 / 29卷 / 01期
基金
欧洲研究理事会;
关键词
05D99; REGULARITY; BOUNDS;
D O I
10.1017/S0963548319000233
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The induced removal lemma of Alon, Fischer, Krivelevich and Szegedy states that if ann-vertex graphGis epsilon-far from being inducedH-free thenGcontains delta(H)(epsilon) center dot n(h)induced copies ofH. Improving upon the original proof, Conlon and Fox proved that 1/delta(H)(epsilon)is at most a tower of height poly(1/epsilon), and asked if this bound can be further improved to a tower of height log(1/epsilon). In this paper we obtain such a bound for graphsGof densityO(epsilon). We actually prove a more general result, which, as a special case, also gives a new proof of Fox's bound for the (non-induced) removal lemma.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条