The Vertex Algebra M(1)+ and Certain Affine Vertex Algebras of Level-1

被引:8
|
作者
Adamovic, Drazen [1 ]
Perse, Ozren [1 ]
机构
[1] Univ Zagreb, Dept Math, Fac Sci, Bijenicka Cesta 30, Zagreb 10000, Croatia
关键词
vertex operator algebra; affine Kac-Moody algebra; coset vertex algebra; conformal embedding; W-algebra; MODULAR INVARIANT REPRESENTATIONS; OPERATOR-ALGEBRAS; LIE-ALGEBRAS; IRREDUCIBLE MODULES; CLASSIFICATION;
D O I
10.3842/SIGMA.2012.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a coset realization of the vertex operator algebra M(1)(+) with central charge l. We realize M(1)(+) as a commutant of certain affine vertex algebras of level -1 in the vertex algebra L-Cl (1) (-1/2 Lambda(0)) circle times L-Cl (1) (-1/2 Lambda(0)). We show that the simple vertex algebra L-Cl (1) (-1 Lambda(0)) can be (conformally) embedded into LA2l-1(1) (-Lambda(0)) and find the corresponding decomposition. We also study certain coset subalgebras inside L-Cl (1)(Lambda(0)).
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Sheets and associated varieties of affine vertex algebras
    Arakawa, Tomoyuki
    Moreau, Anne
    ADVANCES IN MATHEMATICS, 2017, 320 : 157 - 209
  • [42] Dualities and vertex operator algebras of affine type
    Borcea, J
    JOURNAL OF ALGEBRA, 2002, 258 (02) : 389 - 441
  • [43] EXTENDED AFFINE LIE ALGEBRAS, AFFINE VERTEX ALGEBRAS, AND GENERAL LINEAR GROUPS
    Chen, Fulin
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    REPRESENTATION THEORY, 2025, 29 : 60 - 107
  • [44] Exceptional Vertex Operator Algebras and the Virasoro Algebra
    Tuite, Michael P.
    VERTEX OPERATOR ALGEBRAS AND RELATED AREAS, 2009, 497 : 213 - 225
  • [45] Associating vertex algebras with the unitary Lie algebra
    Guo, Hongyan
    Wang, Qing
    JOURNAL OF ALGEBRA, 2015, 424 : 126 - 146
  • [46] q-Virasoro algebra and vertex algebras
    Guo, Hongyan
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (04) : 1258 - 1277
  • [47] Yoneda algebras of the triplet vertex operator algebra
    Caradot, Antoine
    Jiang, Cuipo
    Lin, Zongzhu
    JOURNAL OF ALGEBRA, 2023, 633 : 425 - 463
  • [48] Fusion rules for the vertex operator algebras M(1)+ and VL+
    Abe, T
    Dong, CY
    Li, HS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (01) : 171 - 219
  • [49] Quasi Modules for the Quantum Affine Vertex Algebra in Type A
    Kozic, Slaven
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 365 (03) : 1049 - 1078
  • [50] Quasi Modules for the Quantum Affine Vertex Algebra in Type A
    Slaven Kožić
    Communications in Mathematical Physics, 2019, 365 : 1049 - 1078