EXTENDED AFFINE LIE ALGEBRAS, AFFINE VERTEX ALGEBRAS, AND GENERAL LINEAR GROUPS

被引:0
|
作者
Chen, Fulin [1 ]
Li, Haisheng [2 ]
Tan, Shaobin [1 ]
Wang, Qing [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
来源
REPRESENTATION THEORY | 2025年 / 29卷
关键词
LEVEL-RANK DUALITY; INTEGRABLE REPRESENTATIONS; OPERATOR-ALGEBRAS; QUASI-MODULES; CONSTRUCTION; REALIZATION;
D O I
10.1090/ert/686
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore natural connections among the representations of the extended affine Lie algebra slN(Cq) with Cq=Cq[t0 +/- 1,t1 +/- 1] an irrational quantum 2-torus, the simple affine vertex algebra Lsl infinity(l,0) with l a positive integer, and Levi subgroups GLI of GLl(C). First, we give a canonical isomorphism between the category of integrable restricted slN(Cq)-modules of level l and that of equivariant quasi Lsl infinity(l,0)-modules. Second, we classify irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules. Third, we establish a duality between irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules and irreducible regular GLI-modules on certain fermionic Fock spaces. Fourth, we obtain an explicit realization of every irreducible N-graded equivariant quasi Lsl infinity(l,0)-module. Fifth, we completely determine the following branchings: (i) The branching from Lsl infinity(l,0)circle times Lsl infinity(l ',0) to Lsl infinity(l+l ',0) for quasi modules. (ii) The branching from slN(Cq) to its Levi subalgebras. (iii) The branching from slN(Cq) to its subalgebras slN(Cq[t0 +/- M0,t1 +/- M1]).
引用
收藏
页码:60 / 107
页数:48
相关论文
共 50 条