The Vertex Algebra M(1)+ and Certain Affine Vertex Algebras of Level-1

被引:8
|
作者
Adamovic, Drazen [1 ]
Perse, Ozren [1 ]
机构
[1] Univ Zagreb, Dept Math, Fac Sci, Bijenicka Cesta 30, Zagreb 10000, Croatia
关键词
vertex operator algebra; affine Kac-Moody algebra; coset vertex algebra; conformal embedding; W-algebra; MODULAR INVARIANT REPRESENTATIONS; OPERATOR-ALGEBRAS; LIE-ALGEBRAS; IRREDUCIBLE MODULES; CLASSIFICATION;
D O I
10.3842/SIGMA.2012.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a coset realization of the vertex operator algebra M(1)(+) with central charge l. We realize M(1)(+) as a commutant of certain affine vertex algebras of level -1 in the vertex algebra L-Cl (1) (-1/2 Lambda(0)) circle times L-Cl (1) (-1/2 Lambda(0)). We show that the simple vertex algebra L-Cl (1) (-1 Lambda(0)) can be (conformally) embedded into LA2l-1(1) (-Lambda(0)) and find the corresponding decomposition. We also study certain coset subalgebras inside L-Cl (1)(Lambda(0)).
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Application of Vertex Algebras to the Structure Theory of Certain Representations Over the Virasoro Algebra
    Radobolja, Gordan
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (04) : 1013 - 1034
  • [32] VERTEX OPERATORS AND THOSE IN THE CONSTRUCTION OF AFFINE A(1), D(1), AND E(1) LIE-ALGEBRAS
    FIGUEIREDO, LMV
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1986, 58 (02): : 329 - 329
  • [33] TWISTED VERTEX REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS
    JING, NH
    INVENTIONES MATHEMATICAE, 1990, 102 (03) : 663 - 690
  • [34] Positive Energy Representations of Affine Vertex Algebras
    Futorny, Vyacheslav
    Krizka, Libor
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (02) : 841 - 891
  • [35] Positive Energy Representations of Affine Vertex Algebras
    Vyacheslav Futorny
    Libor Křižka
    Communications in Mathematical Physics, 2021, 383 : 841 - 891
  • [36] Vertex operators for twisted quantum affine algebras
    Jing, NH
    Misra, KC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (04) : 1663 - 1690
  • [37] and as Vertex Operator Extensions¶of Dual Affine Algebras
    P. Bowcock
    B. L. Feigin
    A. M. Semikhatov
    A. Taormina
    Communications in Mathematical Physics, 2000, 214 : 495 - 545
  • [38] Weight Representations of Admissible Affine Vertex Algebras
    Arakawa, Tomoyuki
    Futorny, Vyacheslav
    Ramirez, Luis Enrique
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) : 1151 - 1178
  • [39] Admissible representations of simple affine vertex algebras
    Futorny, Vyacheslav
    Morales, Oscar
    Krizka, Libor
    JOURNAL OF ALGEBRA, 2023, 628 : 22 - 70
  • [40] Weight Representations of Admissible Affine Vertex Algebras
    Tomoyuki Arakawa
    Vyacheslav Futorny
    Luis Enrique Ramirez
    Communications in Mathematical Physics, 2017, 353 : 1151 - 1178