For an admissible affine vertex algebra Vk(g)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${V_k{(\mathfrak{g})}}$$\end{document} of type A, we describe a new family of relaxed highest weight representations of Vk(g)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${V_k{(\mathfrak{g})}}$$\end{document}. They are simple quotients of representations of the affine Kac–Moody algebra g^\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\widehat{\mathfrak{g}}}$$\end{document} induced from the following g\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{g}}$$\end{document}-modules: (1) generic Gelfand–Tsetlin modules in the principal nilpotent orbit, in particular all such modules induced from sl2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{sl}_2}$$\end{document}; (2) all Gelfand–Tsetlin modules in the principal nilpotent orbit that are induced from sl3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{sl}_3}$$\end{document}; (3) all simple Gelfand–Tsetlin modules over sl3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{sl}_3}$$\end{document}. This in particular gives the classification of all simple positive energy weight representations of Vk(g)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${V_k{(\mathfrak{g})}}$$\end{document} with finite dimensional weight spaces for g=sl3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{g}=\mathfrak{sl}_3}$$\end{document}.
机构:
SUSTech Univ, Int Ctr Math, Shenzhen, Peoples R China
Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, BrazilSUSTech Univ, Int Ctr Math, Shenzhen, Peoples R China
Futorny, Vyacheslav
Morales, Oscar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, BrazilSUSTech Univ, Int Ctr Math, Shenzhen, Peoples R China
Morales, Oscar
Krizka, Libor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, BrazilSUSTech Univ, Int Ctr Math, Shenzhen, Peoples R China
机构:
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, JapanUniv Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
机构:
Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
SUSTech, Int Ctr Math, Shenzhen, Peoples R ChinaUniv Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
Futorny, Vyacheslav
Krizka, Libor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, BrazilUniv Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil