Weight Representations of Admissible Affine Vertex Algebras

被引:0
|
作者
Tomoyuki Arakawa
Vyacheslav Futorny
Luis Enrique Ramirez
机构
[1] Kyoto University,Research Institute for Mathematical Sciences
[2] Universidade de São Paulo,Instituto de Matemática e Estatística
[3] Universidade Federal do ABC,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For an admissible affine vertex algebra Vk(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V_k{(\mathfrak{g})}}$$\end{document} of type A, we describe a new family of relaxed highest weight representations of Vk(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V_k{(\mathfrak{g})}}$$\end{document}. They are simple quotients of representations of the affine Kac–Moody algebra g^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{\mathfrak{g}}}$$\end{document} induced from the following g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document}-modules: (1) generic Gelfand–Tsetlin modules in the principal nilpotent orbit, in particular all such modules induced from sl2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_2}$$\end{document}; (2) all Gelfand–Tsetlin modules in the principal nilpotent orbit that are induced from sl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_3}$$\end{document}; (3) all simple Gelfand–Tsetlin modules over sl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_3}$$\end{document}. This in particular gives the classification of all simple positive energy weight representations of Vk(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V_k{(\mathfrak{g})}}$$\end{document} with finite dimensional weight spaces for g=sl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}=\mathfrak{sl}_3}$$\end{document}.
引用
收藏
页码:1151 / 1178
页数:27
相关论文
共 50 条