Approximation of quantum control correction scheme using deep neural networks

被引:16
|
作者
Ostaszewski, M. [1 ]
Miszczak, J. A. [1 ]
Banchi, L. [2 ]
Sadowski, P. [1 ]
机构
[1] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
[2] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Quantum dynamics; Quantum control; Deep learning; Recurrent neural network; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1007/s11128-019-2240-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the functional relationship between quantum control pulses in the idealized case and the pulses in the presence of an unwanted drift. We show that a class of artificial neural networks called LSTM is able to model this functional relationship with high efficiency, and hence the correction scheme required to counterbalance the effect of the drift. Our solution allows studying the mapping from quantum control pulses to system dynamics and analysing its behaviour with respect to the local variations in the control profile.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Approximation of quantum control correction scheme using deep neural networks
    M. Ostaszewski
    J. A. Miszczak
    L. Banchi
    P. Sadowski
    Quantum Information Processing, 2019, 18
  • [2] Correction: Approximation of Nonlinear Functionals Using Deep ReLU Networks
    Linhao Song
    Jun Fan
    Di-Rong Chen
    Ding-Xuan Zhou
    Journal of Fourier Analysis and Applications, 2023, 29
  • [3] Eye Contact Correction using Deep Neural Networks
    Isikdogan, Leo F.
    Gerasimow, Timo
    Michael, Gilad
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 3307 - 3315
  • [4] Layout Error Correction using Deep Neural Networks
    Mohan, Srie Raam
    Bukhari, Syed Saqib
    Dengel, Andreas
    2018 13TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS (DAS), 2018, : 299 - 304
  • [5] Approximation of Lipschitz Functions Using Deep Spline Neural Networks*
    Neumayer, Sebastian
    Goujon, Alexis
    Bohra, Pakshal
    Unser, Michael
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2023, 5 (02): : 306 - 322
  • [6] Approximation Spaces of Deep Neural Networks
    Rémi Gribonval
    Gitta Kutyniok
    Morten Nielsen
    Felix Voigtlaender
    Constructive Approximation, 2022, 55 : 259 - 367
  • [7] Approximation Spaces of Deep Neural Networks
    Gribonval, Remi
    Kutyniok, Gitta
    Nielsen, Morten
    Voigtlaender, Felix
    CONSTRUCTIVE APPROXIMATION, 2022, 55 (01) : 259 - 367
  • [8] A Safe Hierarchical Control Scheme Incorporated with Constrained Deep Neural Networks
    Wang, Hongyuan
    Wang, Jingcheng
    Xu, Haotian
    Zhao, Shangwei
    Li, Xiaocheng
    Shi, Yuanhao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 5355 - 5360
  • [9] Data driven governing equations approximation using deep neural networks
    Qin, Tong
    Wu, Kailiang
    Xiu, Dongbin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 395 : 620 - 635
  • [10] Local approximation of control systems using artificial neural networks
    Pearson, DW
    NEUROCOMPUTING, 1996, 11 (01) : 43 - 54