Identification of nonlinear cardiac cell dynamics using radial basis function regression

被引:0
|
作者
Kanaan-Izquierdo, Samir [1 ]
Velazquez, Susana [2 ]
Benitez, Raul [2 ]
机构
[1] Univ Politecn Cataluna, Dept Software, Comte Urgell 187, Barcelona 08036, Spain
[2] Univ Politecn Cataluna, Dept Automat Control, Barcelona 08036, Spain
关键词
SUPPORT VECTOR REGRESSION; HUMAN VENTRICULAR TISSUE; MODEL; POTENTIALS; ALTERNANS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a novel method for the identification of the dynamics of physiological cardiac cell models. The main aim of the technique is to improve the computational efficiency of large-scale simulations of the electrical activity of the heart. The method identifies the dynamical attractor of a detailed physiological model using statistical learning techniques. In particular, a radial basis function regression method is used to capture the intrinsic dynamical features of the model, thus reducing the computational cost to quantitatively generate cardiac action potentials in a wide range of pacing conditions. The approach permits to recover key properties such as the action potential morphology and duration in a wide range of pacing frequencies.
引用
收藏
页码:6833 / 6836
页数:4
相关论文
共 50 条
  • [41] Nonlinear ridge regression modeling method based on radial basis function and its simulation research
    Institute of Automation, East China University of Science and Technology, Shanghai 200237, China
    Xitong Fangzhen Xuebao, 2006, 10 (2738-2741+2745):
  • [42] Nonlinear system identification using radial basis function-based signal-dependent ARX model
    Peng, H
    Ozaki, T
    Toyoda, Y
    Oda, K
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 675 - 680
  • [43] Identification of nonlinear discrete-time systems using raised-cosine radial basis function networks
    Al-Ajlouni, AF
    Schilling, RJ
    Harris, SL
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2004, 35 (04) : 211 - 221
  • [44] Real-Time Identification of Nonlinear Time-Varying Systems Using Radial Basis Function Network
    O. G. Rudenko
    A. A. Bessonov
    Cybernetics and Systems Analysis, 2003, 39 (6) : 927 - 934
  • [45] SPEAKER IDENTIFICATION USING MULTILAYER PERCEPTRONS AND RADIAL BASIS FUNCTION NETWORKS
    MAK, MW
    ALLEN, WG
    SEXTON, GG
    NEUROCOMPUTING, 1994, 6 (01) : 99 - 117
  • [46] An Efficient Multispectral Palmprint Identification System Using Radial Basis Function
    Meraoumia, Abdallah
    Chitroub, Salim
    Bouridane, Ahmed
    2013 IEEE 11TH INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2013,
  • [47] Identification of nonlinear dynamical system based on adaptive radial basis function neural networks
    Luo G.
    Min H.
    Yang Z.
    Neural Computing and Applications, 2024, 36 (25) : 15617 - 15629
  • [48] Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks
    Zhu, QM
    Billings, SA
    INTERNATIONAL JOURNAL OF CONTROL, 1996, 64 (05) : 871 - 886
  • [49] Nonlinear function learning by the normalized radial basis function networks
    Krzyzak, Adam
    Schaefer, Dominik
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 46 - 55
  • [50] Nonlinear time series forecast using Radial Basis Function Neural Networks
    Zheng, X
    Chen, TL
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 40 (02) : 165 - 168