Identification of nonlinear cardiac cell dynamics using radial basis function regression

被引:0
|
作者
Kanaan-Izquierdo, Samir [1 ]
Velazquez, Susana [2 ]
Benitez, Raul [2 ]
机构
[1] Univ Politecn Cataluna, Dept Software, Comte Urgell 187, Barcelona 08036, Spain
[2] Univ Politecn Cataluna, Dept Automat Control, Barcelona 08036, Spain
关键词
SUPPORT VECTOR REGRESSION; HUMAN VENTRICULAR TISSUE; MODEL; POTENTIALS; ALTERNANS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a novel method for the identification of the dynamics of physiological cardiac cell models. The main aim of the technique is to improve the computational efficiency of large-scale simulations of the electrical activity of the heart. The method identifies the dynamical attractor of a detailed physiological model using statistical learning techniques. In particular, a radial basis function regression method is used to capture the intrinsic dynamical features of the model, thus reducing the computational cost to quantitatively generate cardiac action potentials in a wide range of pacing conditions. The approach permits to recover key properties such as the action potential morphology and duration in a wide range of pacing frequencies.
引用
收藏
页码:6833 / 6836
页数:4
相关论文
共 50 条
  • [31] Robust Structure Selection of Radial Basis Function Networks for Nonlinear System Identification
    Qin, Pan
    Han, Min
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3284 - 3288
  • [32] Identification of nonlinear dynamic processes based on dynamic radial basis function networks
    Ayoubi, M
    Isermann, R
    APPLICATIONS AND SCIENCE OF ARTIFICIAL NEURAL NETWORKS II, 1996, 2760 : 302 - 309
  • [33] ON THE PERSISTENCY OF EXCITATION IN RADIAL BASIS FUNCTION NETWORK IDENTIFICATION OF NONLINEAR-SYSTEMS
    GORINEVSKY, D
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (05): : 1237 - 1244
  • [34] Identification of Nonlinear Nonstationary Objects Using Evolving Radial Basis Network
    Rudenko, O. G.
    Bezsonov, A. A.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2012, 44 (08) : 11 - 21
  • [35] Regulation of nonlinear plants using radial basis function neural networks
    Kostanic, I
    Ham, FM
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 2220 - 2225
  • [36] Nonlinear systems parameters estimation using radial basis function network
    Kenne, G.
    Ahmed-Ali, T.
    Lamnabhi-Lagarrigue, F.
    Nkwawo, H.
    CONTROL ENGINEERING PRACTICE, 2006, 14 (07) : 819 - 832
  • [37] Nonlinear blind source separation using a radial basis function network
    Tan, Y
    Wang, J
    Zurada, JM
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (01): : 124 - 134
  • [38] Nonlinear Image Restoration Using Recurrent Radial Basis Function Network
    Zhao, Shengkui
    Cai, Jianfei
    Man, Zhihong
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1161 - 1164
  • [39] Factorized approach to nonlinear MPC using a radial basis function model
    Bhartiya, S
    Whiteley, JR
    AICHE JOURNAL, 2001, 47 (02) : 358 - 368
  • [40] Nonlinear modeling by radial basis function networks
    Ogawa, S
    Ikeguchi, T
    Matozaki, T
    Aihara, K
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1996, E79A (10) : 1608 - 1617