Identification of nonlinear cardiac cell dynamics using radial basis function regression

被引:0
|
作者
Kanaan-Izquierdo, Samir [1 ]
Velazquez, Susana [2 ]
Benitez, Raul [2 ]
机构
[1] Univ Politecn Cataluna, Dept Software, Comte Urgell 187, Barcelona 08036, Spain
[2] Univ Politecn Cataluna, Dept Automat Control, Barcelona 08036, Spain
关键词
SUPPORT VECTOR REGRESSION; HUMAN VENTRICULAR TISSUE; MODEL; POTENTIALS; ALTERNANS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a novel method for the identification of the dynamics of physiological cardiac cell models. The main aim of the technique is to improve the computational efficiency of large-scale simulations of the electrical activity of the heart. The method identifies the dynamical attractor of a detailed physiological model using statistical learning techniques. In particular, a radial basis function regression method is used to capture the intrinsic dynamical features of the model, thus reducing the computational cost to quantitatively generate cardiac action potentials in a wide range of pacing conditions. The approach permits to recover key properties such as the action potential morphology and duration in a wide range of pacing frequencies.
引用
收藏
页码:6833 / 6836
页数:4
相关论文
共 50 条
  • [21] Nonlinear Image Restoration Using a Radial Basis Function Network
    Keiji Icho
    Youji Iiguni
    Hajime Maeda
    EURASIP Journal on Advances in Signal Processing, 2004
  • [22] Dynamics Identification in Evolution Models Using Radial Basis Functions
    Juri Merger
    Alfio Borzì
    Journal of Dynamical and Control Systems, 2017, 23 : 317 - 335
  • [23] Dynamics Identification in Evolution Models Using Radial Basis Functions
    Merger, Juri
    Borzi, Alfio
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2017, 23 (02) : 317 - 335
  • [24] Fuzzy regression with radial basis function network
    Cheng, CB
    Lee, ES
    FUZZY SETS AND SYSTEMS, 2001, 119 (02) : 291 - 301
  • [25] PERSISTENCY OF EXCITATION IN IDENTIFICATION USING RADIAL BASIS FUNCTION APPROXIMANTS
    KURDILA, AJ
    NARCOWICH, FJ
    WARD, JD
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (02) : 625 - 642
  • [26] Nonlinear function learning and classification using optimal radial basis function networks
    Krzyzak, A
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, 2001, 2123 : 217 - 225
  • [27] Off-line identification of nonlinear systems using structurally adaptive radial basis function networks
    Junge, TF
    Unbehauen, H
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 943 - 948
  • [28] Identification of time-varying nonlinear systems using minimal radial basis function neural networks
    Yingwei, L
    Sundararajan, N
    Saratchandran, P
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1997, 144 (02): : 202 - 208
  • [29] Nonlinear function learning using radial basis function networks:: Convergence and rates
    Krzyzak, Adam
    Schaefer, Dominik
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2008, PROCEEDINGS, 2008, 5097 : 101 - +
  • [30] Nonlinear system identification for speech model using linear predictive coefficients based radial basis function
    Pattanaik, Rakesh Kumar
    Mohanty, Mihir Narayan
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (05): : 1139 - 1150