Identification of nonlinear cardiac cell dynamics using radial basis function regression

被引:0
|
作者
Kanaan-Izquierdo, Samir [1 ]
Velazquez, Susana [2 ]
Benitez, Raul [2 ]
机构
[1] Univ Politecn Cataluna, Dept Software, Comte Urgell 187, Barcelona 08036, Spain
[2] Univ Politecn Cataluna, Dept Automat Control, Barcelona 08036, Spain
关键词
SUPPORT VECTOR REGRESSION; HUMAN VENTRICULAR TISSUE; MODEL; POTENTIALS; ALTERNANS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a novel method for the identification of the dynamics of physiological cardiac cell models. The main aim of the technique is to improve the computational efficiency of large-scale simulations of the electrical activity of the heart. The method identifies the dynamical attractor of a detailed physiological model using statistical learning techniques. In particular, a radial basis function regression method is used to capture the intrinsic dynamical features of the model, thus reducing the computational cost to quantitatively generate cardiac action potentials in a wide range of pacing conditions. The approach permits to recover key properties such as the action potential morphology and duration in a wide range of pacing frequencies.
引用
收藏
页码:6833 / 6836
页数:4
相关论文
共 50 条
  • [1] Nonlinear dynamic system identification using radial basis function networks
    Ni, XF
    Simons, SJR
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 935 - 936
  • [2] Fuzzy Nonlinear Regression Modeling With Radial Basis Function Networks
    Hesamian, Gholamreza
    Johannssen, Arne
    Chukhrova, Nataliya
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (04) : 1733 - 1742
  • [3] Fuzzy nonlinear regression with fuzzified radial basis function network
    Zhang, D
    Deng, LF
    Cai, KY
    So, A
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (06) : 742 - 760
  • [4] Identification of nonlinear force of vibrating system using radial basis function network
    Zhao, YH
    Tu, LY
    Zuo, JX
    Li, GP
    ICVE'98: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON VIBRATION ENGINEERING, VOL I, 1998, : 256 - 260
  • [5] Nonlinear regression modeling via regularized radial basis function networks
    Ando, Tomohiro
    Konishi, Sadanori
    Imoto, Seiya
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (11) : 3616 - 3633
  • [6] Nonlinear system identification using radial basis functions
    Mokhasi, Paritosh
    Rempfer, Dietmar
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (02) : 121 - 162
  • [7] Adaptive nonlinear system identification using minimal radial basis function neural networks
    Lu, YW
    Sundararajan, N
    Saratchandran, P
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 3521 - 3524
  • [8] Annealing Robust Radial Basis Function Networks with Support Vector Regression for Nonlinear Inverse System Identification with Outliers
    Fu, Yu-Yi
    Wu, Chia-Ju
    Jeng, Jin-Tsong
    Ko, Chia-Nan
    JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (13) : 1915 - 1940
  • [9] MultiLogistic Regression using Initial and Radial Basis Function covariates
    Antonio Gutierrez, Pedro
    Hervas-Martinez, Cesar
    Martinez-Estudillo, Francisco J.
    Carlos Fernandez, Juan
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 796 - +
  • [10] Nonlinear regression and multiclass classification via regularized radial basis function networks
    Ando, T
    Konishi, S
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1006 - 1010