On three-periodic trajectories of multi-dimensional dual billiards

被引:5
|
作者
Tabachnikov, Serge [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2003年 / 3卷 / 02期
关键词
Dual billiards; symplectic relation; periodic orbits; Morse and Lusternik-Schnirelman theory;
D O I
10.2140/agt.2003.3.993
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the dual billiard map with respect to a smooth strictly convex closed hypersurface in linear 2m-dimensional symplectic space and prove that it has at least 2m distinct 3-periodic orbits.
引用
收藏
页码:993 / 1004
页数:12
相关论文
共 50 条
  • [21] Some properties of three-periodic sphere packings
    Michael O’Keeffe
    Structural Chemistry, 2012, 23 : 1079 - 1087
  • [22] VARIATIONAL PRINCIPLE FOR PERIODIC TRAJECTORIES OF HYPERBOLIC BILLIARDS
    BUNIMOVICH, LA
    CHAOS, 1995, 5 (02) : 349 - 355
  • [23] ON THE STABILITY OF PERIODIC SOLUTIONS OF MULTI-DIMENSIONAL MODELS
    Cavazzoni, Rita
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (02) : 181 - 196
  • [24] Underlying nets in three-periodic coordination polymers
    Alexandrov, Eugeny V.
    Blatov, Vladislav A.
    Kochetkov, Anton V.
    Proserpio, Davide M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C268 - C268
  • [25] PERIODIC HOMOGENIZATION WITH AN INTERFACE: THE MULTI-DIMENSIONAL CASE
    Hairer, Martin
    Manson, Charles
    ANNALS OF PROBABILITY, 2011, 39 (02): : 648 - 682
  • [26] Homogenization of periodic multi-dimensional structures.
    Ansini, N
    Braides, A
    Piat, VC
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2B (03): : 735 - 758
  • [27] Visual Analysis of Trajectories in Multi-Dimensional State Spaces
    Grottel, S.
    Heinrich, J.
    Weiskopf, D.
    Gumhold, S.
    COMPUTER GRAPHICS FORUM, 2014, 33 (06) : 310 - 321
  • [28] Three-periodic nets and tilings: minimal nets
    Bonneau, C
    Delgado-Friedrichs, O
    O'Keeffe, M
    Yaghi, OM
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2004, 60 : 517 - 520
  • [29] Three-dimensional billiards: Visualization of regular structures and trapping of chaotic trajectories
    Firmbach, Markus
    Lange, Steffen
    Ketzmerick, Roland
    Baecker, Arnd
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [30] Local ergodicity for systems with growth properties including multi-dimensional dispersing billiards
    Pavel Bachurin
    Péter Bálint
    Imre Péter Tóth
    Israel Journal of Mathematics, 2008, 167