On three-periodic trajectories of multi-dimensional dual billiards

被引:5
|
作者
Tabachnikov, Serge [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2003年 / 3卷 / 02期
关键词
Dual billiards; symplectic relation; periodic orbits; Morse and Lusternik-Schnirelman theory;
D O I
10.2140/agt.2003.3.993
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the dual billiard map with respect to a smooth strictly convex closed hypersurface in linear 2m-dimensional symplectic space and prove that it has at least 2m distinct 3-periodic orbits.
引用
收藏
页码:993 / 1004
页数:12
相关论文
共 50 条
  • [11] Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards
    Bálint, P
    Tóth, IP
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (01) : 37 - 59
  • [12] Multi-Dimensional Semi-Dispersing Billiards: Singularities and the Fundamental Theorem
    P. Bálint
    N. Chernov
    D. Szász
    I. P. Tóth
    Annales Henri Poincaré, 2002, 3 : 451 - 482
  • [13] Multi-dimensional semi-dispersing billiards:: Singularities and the fundamental theorem
    Bálint, P
    Chernov, N
    Szász, D
    Tóth, IP
    ANNALES HENRI POINCARE, 2002, 3 (03): : 451 - 482
  • [14] Three-periodic nets and tilings: semiregular nets
    Friedrichs, OD
    O'Keeffe, MO
    Yaghi, OM
    ACTA CRYSTALLOGRAPHICA SECTION A, 2003, 59 : 515 - 525
  • [15] Some properties of three-periodic sphere packings
    O'Keeffe, Michael
    STRUCTURAL CHEMISTRY, 2012, 23 (04) : 1079 - 1087
  • [16] LOCALLY MAXIMIZING ORBITS FOR MULTI-DIMENSIONAL TWIST MAPS AND BIRKHOFF BILLIARDS
    Bialy, Misha
    Tsodikovich, Daniel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025,
  • [17] PERIODIC TRAJECTORIES IN RIGHT-TRIANGLE BILLIARDS
    CIPRA, B
    HANSON, RM
    KOLAN, A
    PHYSICAL REVIEW E, 1995, 52 (02): : 2066 - 2071
  • [18] PERIODIC TRAJECTORIES OF BIRKHOFF'S BILLIARDS.
    Treshchev, D.V.
    Moscow University mechanics bulletin, 1987, 42 (05) : 35 - 39
  • [19] Correlations for pairs of periodic trajectories for open billiards
    Petkov, Vesselin
    Stoyanov, Luchezar
    NONLINEARITY, 2009, 22 (11) : 2657 - 2679
  • [20] Classification of symmetric periodic trajectories in ellipsoidal billiards
    Casas, Pablo S.
    Ramirez-Ros, Rafael
    CHAOS, 2012, 22 (02)