Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes

被引:2
|
作者
Chu, Tingjin [1 ]
Liu, Jialuo [2 ]
Zhu, Jun [3 ,4 ]
Wang, Haonan [2 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA
关键词
Covariance functions; Nonstationary processes; Random fields; Spatial statistics; Spatio-temporal statistics; MAXIMUM-LIKELIHOOD-ESTIMATION; COVARIANCE; SEPARABILITY; MODELS; REGRESSION;
D O I
10.1007/s13171-020-00213-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal data indexed by sampling locations and sampling time points are encountered in many scientific disciplines such as climatology, environmental sciences, and public health. Here, we propose a novel spatio-temporal expanding distance (STED) asymptotic framework for studying the properties of statistical inference for nonstationary spatio-temporal models. In particular, to model spatio-temporal dependence, we develop a new class of locally stationary spatio-temporal covariance functions. The STED asymptotic framework has a fixed spatio-temporal domain for spatio-temporal processes that are globally nonstationary in a rescaled fixed domain and locally stationary in a distance expanding domain. The utility of STED is illustrated by establishing the asymptotic properties of the maximum likelihood estimation for a general class of spatio-temporal covariance functions. A simulation study suggests sound finite-sample properties and the method is applied to a sea-surface temperature dataset.
引用
收藏
页码:689 / 713
页数:25
相关论文
共 50 条
  • [31] Generalized Spatio-Temporal Adaptive Normalization Framework
    Kumar, Neeraj
    Narang, Anish
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 116 - 121
  • [32] Spatio-temporal Granger causality: A new framework
    Luo, Qiang
    Lu, Wenlian
    Cheng, Wei
    Valdes-Sosa, Pedro A.
    Wen, Xiaotong
    Ding, Mingzhou
    Feng, Jianfeng
    NEUROIMAGE, 2013, 79 : 241 - 263
  • [33] An intelligent framework for spatio-temporal vehicle tracking
    Chen, SC
    Shyu, ML
    Zhang, CC
    2001 IEEE INTELLIGENT TRANSPORTATION SYSTEMS - PROCEEDINGS, 2001, : 213 - 218
  • [34] A spatio-temporal framework for managing archeological data
    Belussi, Alberto
    Migliorini, Sara
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2017, 80 (3-4) : 175 - 218
  • [35] A framework of spatio-temporal trajectory simplification methods
    Bermingham, Luke
    Lee, Ickjai
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017, 31 (06) : 1128 - 1153
  • [36] A framework for characterizing spatio-temporal data models
    Parent, C
    ADVANCES IN MULTIMEDIA AND DATABASES FOR THE NEW CENTURY: A SWISS/JAPANESE PERSPECTIVE, 2000, 10 : 89 - 98
  • [37] STAM: A Framework for Spatio-Temporal Affordance Maps
    Riccio, Francesco
    Capobianco, Roberto
    Hanheide, Marc
    Nardi, Daniele
    MODELLING AND SIMULATION FOR AUTONOMOUS SYSTEMS, MESAS 2016, 2016, 9991 : 271 - 280
  • [38] A spatio-temporal framework for managing archeological data
    Alberto Belussi
    Sara Migliorini
    Annals of Mathematics and Artificial Intelligence, 2017, 80 : 175 - 218
  • [39] A framework of spatio-temporal analysis for video surveillance
    Chen, Duan-Yu
    Cannons, Kevin
    Tyan, Hsiao-Rong
    Shih, Sheng-Wen
    Liao, Hong-Yuan Mark
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 2745 - +
  • [40] An extensible framework for spatio-temporal database applications
    Faria, G
    Medeiros, CB
    Nascimento, MA
    TENTH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT - PROCEEDINGS, 1998, : 202 - 205