Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes

被引:2
|
作者
Chu, Tingjin [1 ]
Liu, Jialuo [2 ]
Zhu, Jun [3 ,4 ]
Wang, Haonan [2 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA
关键词
Covariance functions; Nonstationary processes; Random fields; Spatial statistics; Spatio-temporal statistics; MAXIMUM-LIKELIHOOD-ESTIMATION; COVARIANCE; SEPARABILITY; MODELS; REGRESSION;
D O I
10.1007/s13171-020-00213-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal data indexed by sampling locations and sampling time points are encountered in many scientific disciplines such as climatology, environmental sciences, and public health. Here, we propose a novel spatio-temporal expanding distance (STED) asymptotic framework for studying the properties of statistical inference for nonstationary spatio-temporal models. In particular, to model spatio-temporal dependence, we develop a new class of locally stationary spatio-temporal covariance functions. The STED asymptotic framework has a fixed spatio-temporal domain for spatio-temporal processes that are globally nonstationary in a rescaled fixed domain and locally stationary in a distance expanding domain. The utility of STED is illustrated by establishing the asymptotic properties of the maximum likelihood estimation for a general class of spatio-temporal covariance functions. A simulation study suggests sound finite-sample properties and the method is applied to a sea-surface temperature dataset.
引用
收藏
页码:689 / 713
页数:25
相关论文
共 50 条
  • [41] Spatio-Temporal Hawkes Point Processes: A Review
    Bernabeu, Alba
    Zhuang, Jiancang
    Mateu, Jorge
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024,
  • [42] Association Rule Mining on Spatio-temporal Processes
    Zhang Xuewu
    Su Fenzhen
    Du Yunyan
    Zhang Xuewu
    Shi Yishao
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 11296 - +
  • [43] Multivariate Kalman filtering for spatio-temporal processes
    Guillermo Ferreira
    Jorge Mateu
    Emilio Porcu
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 4337 - 4354
  • [44] Multivariate Kalman filtering for spatio-temporal processes
    Ferreira, Guillermo
    Mateu, Jorge
    Porcu, Emilio
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (12) : 4337 - 4354
  • [45] Spatio-temporal resolution of primary processes of photosynthesis
    Junge, Wolfgang
    FARADAY DISCUSSIONS, 2015, 177 : 547 - 562
  • [46] Spatio-temporal modeling of environmental and health processes
    José M. Angulo
    María D. Ruiz-Medina
    Stochastic Environmental Research and Risk Assessment, 2008, 22 : 1 - 2
  • [47] Nonparametric test for separability of spatio-temporal processes
    Crujeiras, Rosa M.
    Fernandez-Casal, Ruben
    Gonzalez-Manteiga, Wenceslao
    ENVIRONMETRICS, 2010, 21 (3-4) : 382 - 399
  • [48] Mark variograms for spatio-temporal point processes
    Stoyan, Dietrich
    Rodriguez-Cortes, Francisco J.
    Mateu, Jorge
    Gille, Wilfried
    SPATIAL STATISTICS, 2017, 20 : 125 - 147
  • [49] Spatio-temporal modeling of environmental and health processes
    Angulo, Jose M.
    Ruiz-Medina, Maria D.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2008, 22 (Suppl 1) : S1 - S2
  • [50] Graph Neural Processes for Spatio-Temporal Extrapolation
    Hu, Junfeng
    Liang, Yuxuan
    Fan, Zhencheng
    Chen, Hongyang
    Zheng, Yu
    Zimmermann, Roger
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 752 - 763