Generalized Spatio-Temporal Adaptive Normalization Framework

被引:0
|
作者
Kumar, Neeraj [1 ]
Narang, Anish [2 ]
机构
[1] Indian Inst Technol, New Delhi 110016, India
[2] AAAI, Washington, DC USA
关键词
D O I
10.1109/ICAIIC57133.2023.10067068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose Generalized Spatio-Temporal Adaptive Normalization (GSTAN) Framework for Generative Adversarial and Deep Learning Inference Architectures. By leveraging higher-order derivatives based temporal feature maps along with spatial feature map, our normalization approach leads to: (a) efficient generation of high-quality videos with better details and enhanced temporal coherence, and, (b) higher accuracy inference on multiple tasks. In order to evaluate model generalization, we performed experimental evaluation on multiple tasks including: video to video generation, video segmentation and activity recognition (classify the activity out of 101 activity classes, for a given input video). Detailed experimental analysis over a variety of datasets including CityScape, UCF101 and CK+ demonstrates superior performance of GSTAN and also provides the impact of its various configurations, including parallel GSTAN and sequential GSTAN.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 50 条
  • [1] Generalized spatio-temporal models
    Cuervo, Edilberto Cepeda
    [J]. SORT, 2011, 35 (02): : 165 - 178
  • [2] Generalized spatio-temporal models
    Cepeda Cuervo, Edilberto
    [J]. SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2011, 35 (02) : 165 - 178
  • [3] A Framework of Spatio-Temporal Data Adaptive Visualizations for Mobile Environment
    Yu, Jianwei
    Yang, Bisheng
    [J]. 2009 17TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, VOLS 1 AND 2, 2009, : 403 - 408
  • [4] Dual-track spatio-temporal learning for urban flow prediction with adaptive normalization
    Li, Xiaoyu
    Gong, Yongshun
    Liu, Wei
    Yin, Yilong
    Zheng, Yu
    Nie, Liqiang
    [J]. ARTIFICIAL INTELLIGENCE, 2024, 328
  • [5] Mining generalized spatio-temporal patterns
    Wang, JM
    Hsu, WN
    Lee, ML
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PROCEEDINGS, 2005, 3453 : 649 - 661
  • [6] Spatio-Temporal Normalization of Data from Heterogeneous Sensors
    Fanelli, Alessio
    Micucci, Daniela
    Mobilio, Marco
    Tisato, Francesco
    [J]. 2015 10TH INTERNATIONAL JOINT CONFERENCE ON SOFTWARE TECHNOLOGIES (ICSOFT), VOL 1, 2015, : 462 - 467
  • [7] A Framework on Spatio-Temporal Resource Search
    Guo, Qing
    Wolfson, Ouri
    Ayala, Daniel
    [J]. 2015 INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2015, : 1043 - 1048
  • [8] Adaptive spatio-temporal interpolation methods
    Gao, J
    Revesz, P
    [J]. Proceedings of the 8th Joint Conference on Information Sciences, Vols 1-3, 2005, : 1622 - 1625
  • [9] A SPATIO-TEMPORAL GENERALIZED FOURIER DOMAIN FRAMEWORK TO ACOUSTIC MODELING IN ENCLOSED SPACES
    Martinez, Jorge
    Heusdens, Richard
    Hendriks, Richard C.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 529 - 532
  • [10] In Situ Adaptive Spatio-Temporal Data Summarization
    Dutta, Soumya
    Tasnim, Humayra
    Turton, Terece L.
    Ahrens, James
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 315 - 321