Generalized Spatio-Temporal Adaptive Normalization Framework

被引:0
|
作者
Kumar, Neeraj [1 ]
Narang, Anish [2 ]
机构
[1] Indian Inst Technol, New Delhi 110016, India
[2] AAAI, Washington, DC USA
关键词
D O I
10.1109/ICAIIC57133.2023.10067068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose Generalized Spatio-Temporal Adaptive Normalization (GSTAN) Framework for Generative Adversarial and Deep Learning Inference Architectures. By leveraging higher-order derivatives based temporal feature maps along with spatial feature map, our normalization approach leads to: (a) efficient generation of high-quality videos with better details and enhanced temporal coherence, and, (b) higher accuracy inference on multiple tasks. In order to evaluate model generalization, we performed experimental evaluation on multiple tasks including: video to video generation, video segmentation and activity recognition (classify the activity out of 101 activity classes, for a given input video). Detailed experimental analysis over a variety of datasets including CityScape, UCF101 and CK+ demonstrates superior performance of GSTAN and also provides the impact of its various configurations, including parallel GSTAN and sequential GSTAN.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 50 条
  • [21] A framework of spatio-temporal trajectory simplification methods
    Bermingham, Luke
    Lee, Ickjai
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017, 31 (06) : 1128 - 1153
  • [22] A framework for characterizing spatio-temporal data models
    Parent, C
    [J]. ADVANCES IN MULTIMEDIA AND DATABASES FOR THE NEW CENTURY: A SWISS/JAPANESE PERSPECTIVE, 2000, 10 : 89 - 98
  • [23] A framework of spatio-temporal analysis for video surveillance
    Chen, Duan-Yu
    Cannons, Kevin
    Tyan, Hsiao-Rong
    Shih, Sheng-Wen
    Liao, Hong-Yuan Mark
    [J]. PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 2745 - +
  • [24] Adaptive spatio-temporal filtration of bioelectrical signals
    Ostlund, N.
    Wiklund, U.
    Yu, J.
    Karlsson, J. S.
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 5983 - 5986
  • [25] Spatio-temporal blind adaptive multiuser detection
    Chkeif, A
    Abed-Meraim, K
    Kawas-Kaleh, G
    Hua, Y
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2000, 48 (05) : 729 - 732
  • [26] Spatio-temporal searcher for adaptive antenna systems
    Kim, JH
    [J]. ELECTRONICS LETTERS, 2003, 39 (10) : 804 - 806
  • [27] An extensible framework for spatio-temporal database applications
    Faria, G
    Medeiros, CB
    Nascimento, MA
    [J]. TENTH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT - PROCEEDINGS, 1998, : 202 - 205
  • [28] Adaptive Spatio-Temporal Query Strategies in Blockchain
    Chen, Haibo
    Liang, Daolei
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (07)
  • [29] The continuous spatio-temporal model (CSTM) as an exhaustive framework for multi-scale spatio-temporal analysis
    Van de Weghe, N.
    de Roo, B.
    Qiang, Y.
    Versichele, M.
    Neutens, T.
    de Maeyer, P.
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2014, 28 (05) : 1047 - 1060
  • [30] An End to End Framework With Adaptive Spatio-Temporal Attention Module for Human Action Recognition
    Liu, Shaocan
    Ma, Xin
    Wu, Hanbo
    Li, Yibin
    [J]. IEEE ACCESS, 2020, 8 : 47220 - 47231