Generalized Spatio-Temporal Adaptive Normalization Framework

被引:0
|
作者
Kumar, Neeraj [1 ]
Narang, Anish [2 ]
机构
[1] Indian Inst Technol, New Delhi 110016, India
[2] AAAI, Washington, DC USA
关键词
D O I
10.1109/ICAIIC57133.2023.10067068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose Generalized Spatio-Temporal Adaptive Normalization (GSTAN) Framework for Generative Adversarial and Deep Learning Inference Architectures. By leveraging higher-order derivatives based temporal feature maps along with spatial feature map, our normalization approach leads to: (a) efficient generation of high-quality videos with better details and enhanced temporal coherence, and, (b) higher accuracy inference on multiple tasks. In order to evaluate model generalization, we performed experimental evaluation on multiple tasks including: video to video generation, video segmentation and activity recognition (classify the activity out of 101 activity classes, for a given input video). Detailed experimental analysis over a variety of datasets including CityScape, UCF101 and CK+ demonstrates superior performance of GSTAN and also provides the impact of its various configurations, including parallel GSTAN and sequential GSTAN.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 50 条
  • [31] A generic algorithmic framework for aggregation of spatio-temporal data
    Jeong, SH
    Fernandes, AAA
    Paton, NW
    Griffiths, T
    [J]. 16TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2004, : 245 - 254
  • [32] A framework for intelligence analysis using spatio-temporal storytelling
    Raimundo F. Dos Santos
    Sumit Shah
    Arnold Boedihardjo
    Feng Chen
    Chang-Tien Lu
    Patrick Butler
    Naren Ramakrishnan
    [J]. GeoInformatica, 2016, 20 : 285 - 326
  • [33] NextPlace: A Spatio-temporal Prediction Framework for Pervasive Systems
    Scellato, Salvatore
    Musolesi, Mirco
    Mascolo, Cecilia
    Latora, Vito
    Campbell, Andrew T.
    [J]. PERVASIVE COMPUTING, 2011, 6696 : 152 - 169
  • [34] Simulation of Arrhythmia using Adaptive Spatio-temporal Resolution
    Szilagyi, Sandor M.
    Szilagyi, Laszlo
    Hirsbrunner, Beat
    [J]. 2013 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2013, 40 : 365 - 368
  • [35] Background subtraction with adaptive spatio-temporal neighborhood analysis
    Cristani, Marco
    Murino, Vittorio
    [J]. VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2008, : 484 - 489
  • [36] Adaptive motion estimation based on spatio-temporal correlation
    Kim, DW
    Choi, JS
    Kim, JT
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 1998, 13 (02) : 161 - 170
  • [37] Adaptive spatio-temporal models for satellite ecological data
    Carlo Grillenzoni
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9 : 158 - 180
  • [38] A visual analytics framework for spatio-temporal analysis and modelling
    Andrienko, Natalia
    Andrienko, Gennady
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 55 - 83
  • [39] A visual analytics framework for spatio-temporal analysis and modelling
    Natalia Andrienko
    Gennady Andrienko
    [J]. Data Mining and Knowledge Discovery, 2013, 27 : 55 - 83
  • [40] A mathematical framework for spatio-temporal control in industrial drying
    Naraigh, Lennon O.
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2024, 15 (01)