Multi-labeler Classification Using Kernel Representations and Mixture of Classifiers

被引:0
|
作者
Imbajoa-Ruiz, D. E. [1 ]
Gustin, I. D. [1 ]
Bolanos-Ledezma, M. [1 ]
Arciniegas-Mejia, A. F. [1 ]
Guasmayan-Guasmayan, F. A. [1 ,2 ]
Bravo-Montenegro, M. J. [2 ]
Castro-Ospina, A. E. [3 ]
Peluffo-Ordonez, D. H. [1 ,4 ]
机构
[1] Univ Narino, Pasto, Colombia
[2] Univ Mariana, Pasto, Colombia
[3] Inst Tecnol Metropolitano, Res Ctr, Medellin, Colombia
[4] Univ Tecn Norte, Ibarra, Ecuador
关键词
Multi-labeler classification; Supervised kernel; Support vector machines;
D O I
10.1007/978-3-319-52277-7_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work introduces a multi-labeler kernel novel approach for data classification learning from multiple labelers. The learning process is done by training support-vector machine classifiers using the set of labelers (one labeler per classifier). The objective functions representing the boundary decision of each classifier are mixed by means of a linear combination. Followed from a variable relevance, the weighting factors are calculated regarding kernel matrices representing each labeler. To do so, a so-called supervised kernel function is also introduced, which is used to construct kernel matrices. Our multi-labeler method reaches very good results being a suitable alternative to conventional approaches.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 50 条
  • [31] Learning rates for multi-kernel linear programming classifiers
    Feilong Cao
    Xing Xing
    Frontiers of Mathematics in China, 2011, 6 : 203 - 219
  • [32] Approaching Multi-dimensional Classification by Using Bayesian Network Chain Classifiers
    Zhang, Ping
    Yang, Youlong
    Zhu, Xiaofeng
    2014 SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL 2, 2014, : 108 - 112
  • [33] Improving Multilabel Classification Performance by Using Ensemble of Multi-label Classifiers
    Tahir, Muhammad Atif
    Kittler, Josef
    Mikolajczyk, Krystian
    Yan, Fei
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2010, 5997 : 11 - 21
  • [34] Adaptive Weighted Fusion of Local Kernel Classifiers for Effective Pattern Classification
    Yang, Shixin
    Zuo, Wangmeng
    Liu, Lei
    Li, Yanlai
    Zhang, David
    ADVANCED INTELLIGENT COMPUTING, 2011, 6838 : 63 - 70
  • [35] KERNEL BASED CLASSIFIERS FUSION WITH FEATURES DIVERSITY FOR BREAST MASSES CLASSIFICATION
    Azizi, Nabiha
    Zemmal, Nawel
    Guiassa, Yamina Tlili
    Farah, Nadir
    2013 8TH INTERNATIONAL WORKSHOP ON SYSTEMS, SIGNAL PROCESSING AND THEIR APPLICATIONS (WOSSPA), 2013, : 116 - 121
  • [36] Comparative Study of Kernel SVM and ANN Classifiers for Brain Neoplasm Classification
    Mahima
    Padmavathi, N. B.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 469 - 473
  • [37] Video Segmentation Framework Based on Multi-kernel Representations and Feature Relevance Analysis for Object Classification
    Molina-Giraldo, S.
    Carvajal-Gonzalez, J.
    Alvarez-Meza, A. M.
    Castellanos-Dominguez, G.
    PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2013, 2015, 318 : 273 - 283
  • [38] Various hyperplane classifiers using kernel feature spaces
    Kovács, Kornél
    Kocsor, András
    Acta Cybernetica, 2003, 16 (02): : 271 - 278
  • [39] Melanoma recognition using representative and discriminative kernel classifiers
    Tommasi, Tatiana
    La Torre, Elisabetta
    Caputo, Barbara
    COMPUTER VISION APPROACHES TO MEDICAL IMAGE ANALYSIS, 2006, 4241 : 1 - 12
  • [40] Face recognition using kernel nearest feature classifiers
    He, Yunhui
    2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 678 - 683