Multi-labeler Classification Using Kernel Representations and Mixture of Classifiers

被引:0
|
作者
Imbajoa-Ruiz, D. E. [1 ]
Gustin, I. D. [1 ]
Bolanos-Ledezma, M. [1 ]
Arciniegas-Mejia, A. F. [1 ]
Guasmayan-Guasmayan, F. A. [1 ,2 ]
Bravo-Montenegro, M. J. [2 ]
Castro-Ospina, A. E. [3 ]
Peluffo-Ordonez, D. H. [1 ,4 ]
机构
[1] Univ Narino, Pasto, Colombia
[2] Univ Mariana, Pasto, Colombia
[3] Inst Tecnol Metropolitano, Res Ctr, Medellin, Colombia
[4] Univ Tecn Norte, Ibarra, Ecuador
关键词
Multi-labeler classification; Supervised kernel; Support vector machines;
D O I
10.1007/978-3-319-52277-7_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work introduces a multi-labeler kernel novel approach for data classification learning from multiple labelers. The learning process is done by training support-vector machine classifiers using the set of labelers (one labeler per classifier). The objective functions representing the boundary decision of each classifier are mixed by means of a linear combination. Followed from a variable relevance, the weighting factors are calculated regarding kernel matrices representing each labeler. To do so, a so-called supervised kernel function is also introduced, which is used to construct kernel matrices. Our multi-labeler method reaches very good results being a suitable alternative to conventional approaches.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 50 条
  • [41] Malware Classification Using Ensemble Classifiers
    Hijazi, Mohd Hanafi Ahmad
    Beng, Tan Choon
    Mountstephens, James
    Lim, Yuto
    Nisar, Kashif
    ADVANCED SCIENCE LETTERS, 2018, 24 (02) : 1172 - 1176
  • [42] Fruit Classification using Multiple Classifiers
    Bhanu, H.S.
    Kumar, Praveen M.S.
    Shivaprasad, N.
    Purushotham, R.
    Madhusudhana, R.
    15th International Conference on Advances in Computing, Control, and Telecommunication Technologies, ACT 2024, 2024, 2 : 6638 - 6651
  • [43] Document Classification using Symbolic Classifiers
    Revanasiddappa, M. B.
    Harish, B. S.
    Manjunath, S.
    2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 299 - 303
  • [44] Analysis of Motor Imaginary BCI Within Multi-environment Scenarios Using a Mixture of Classifiers
    Ortega-Adarme, M.
    Moreno-Revelo, M.
    Peluffo-Ordonez, D. H.
    Marin Castrillon, D.
    Castro-Ospina, A. E.
    Becerra, M. A.
    ADVANCES IN COMPUTING, CCC 2017, 2017, 735 : 511 - 523
  • [45] On Gauss mixture vector quantizers and Gabor wavelet classifiers for texture classification
    Pyun, Kyungsuk
    Lim, Johan
    Won, Chee Sun
    Gray, Robert M.
    2005 39TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2, 2005, : 1222 - 1225
  • [46] Multi-stream dialect classification using SVM-GMM hybrid classifiers
    Chitturi, Rahul
    Hansen, John. H. L.
    2007 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, VOLS 1 AND 2, 2007, : 431 - 436
  • [47] Multi-category news classification using Support Vector Machine based classifiers
    Pooja Saigal
    Vaibhav Khanna
    SN Applied Sciences, 2020, 2
  • [48] Malicious Software Family Classification using Machine Learning Multi-class Classifiers
    San, Cho Cho
    Thwin, Mie Mie Su
    Htun, Naing Linn
    COMPUTATIONAL SCIENCE AND TECHNOLOGY, 2019, 481 : 423 - 433
  • [49] Multi-category news classification using Support Vector Machine based classifiers
    Saigal, Pooja
    Khanna, Vaibhav
    SN APPLIED SCIENCES, 2020, 2 (03):
  • [50] Multi-level Classification of Emphysema in HRCT Lung Images Using Delegated Classifiers
    Prasad, Mithun
    Sowmya, Arcot
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT I, PROCEEDINGS, 2008, 5241 : 59 - +