Comparative Study of Kernel SVM and ANN Classifiers for Brain Neoplasm Classification

被引:0
|
作者
Mahima [1 ]
Padmavathi, N. B. [1 ]
机构
[1] NMAMIT, Dept E&C, Nitte, Karnataka, India
关键词
MRI; KSVM; ANN; MSE; Classification; Brain Neoplasm; MACHINE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article an efficient classification method is proposed for classifying brain neoplasm detected in Magnetic Resonance Imaging (MRI) images. For training purpose 13 features are extracted from the Gray Level Co-occurrence Matrix (GLCM) of MRI images. Also classification accuracy is assessed via 10-fold rotation estimation scheme. In present work two classifiers Support Vector Machine (SVM) and Artificial Neural Network (ANN) have been compared using accuracy, performance measure MSE and computational time requirement. A prominent accuracy has been attained in case of multilayer ANN for a given dataset.
引用
收藏
页码:469 / 473
页数:5
相关论文
共 50 条
  • [1] Comparative analysis of SVM and ANN classifiers for defective and non-defective fabric images classification
    Anami, Basavaraj S.
    Elemmi, Mahantesh C.
    [J]. JOURNAL OF THE TEXTILE INSTITUTE, 2022, 113 (06) : 1072 - 1082
  • [2] A Comparative Study of Multiple Kernel Learning Approaches for SVM Classification
    Zare, T.
    Sadeghi, M. T.
    Abutalebi, H. R.
    [J]. 2014 7th International Symposium on Telecommunications (IST), 2014, : 84 - 89
  • [3] Comparative Analysis of SVM and ANN Classifiers using Multilevel Fusion of Multi-Sensor Data in Urban Land Classification
    Vohra, Rubeena
    Tiwari, K. C.
    [J]. SENSING AND IMAGING, 2020, 21 (01):
  • [4] Comparative Analysis of SVM and ANN Classifiers using Multilevel Fusion of Multi-Sensor Data in Urban Land Classification
    Rubeena Vohra
    K. C. Tiwari
    [J]. Sensing and Imaging, 2020, 21
  • [5] A comparative study of three smooth SVM classifiers
    Xiong, Jinzhi
    Hu, Tianming
    Li, Guangming
    Peng, Hong
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 5962 - +
  • [6] Ensemble of Multiple Kernel SVM Classifiers
    Wang, Xiaoguang
    Liu, Xuan
    Japkowicz, Nathalie
    Matwin, Stan
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, CANADIAN AI 2014, 2014, 8436 : 239 - 250
  • [7] Two-phase classification: ANN and A-SVM classifiers on motor imagery BCI
    Judith, A. Mary
    Priya, S. Baghavathi
    Mahendran, Rakesh Kumar
    Gadekallu, Thippa Reddy
    Ambati, Loknath Sai
    [J]. ASIAN JOURNAL OF CONTROL, 2023, 25 (05) : 3318 - 3329
  • [8] Comparative Analysis on Effect of Different SVM Kernel Functions for Classification
    Virmani, Deepali
    Pandey, Himakshi
    [J]. INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 657 - 670
  • [9] Classification of Time Series Using Singular Values and Wavelet Subband Analysis with ANN and SVM Classifiers
    Benyo, Balazs
    Somogyi, Peter
    Palancz, Bela
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2006, 10 (04) : 498 - 503
  • [10] COMPARISON OF CBF, ANN AND SVM CLASSIFIERS FOR OBJECT BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES
    Buddhiraju, Krishna Mohan
    Rizvi, Imdad Ali
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 40 - 43