Multi-labeler Classification Using Kernel Representations and Mixture of Classifiers

被引:0
|
作者
Imbajoa-Ruiz, D. E. [1 ]
Gustin, I. D. [1 ]
Bolanos-Ledezma, M. [1 ]
Arciniegas-Mejia, A. F. [1 ]
Guasmayan-Guasmayan, F. A. [1 ,2 ]
Bravo-Montenegro, M. J. [2 ]
Castro-Ospina, A. E. [3 ]
Peluffo-Ordonez, D. H. [1 ,4 ]
机构
[1] Univ Narino, Pasto, Colombia
[2] Univ Mariana, Pasto, Colombia
[3] Inst Tecnol Metropolitano, Res Ctr, Medellin, Colombia
[4] Univ Tecn Norte, Ibarra, Ecuador
关键词
Multi-labeler classification; Supervised kernel; Support vector machines;
D O I
10.1007/978-3-319-52277-7_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work introduces a multi-labeler kernel novel approach for data classification learning from multiple labelers. The learning process is done by training support-vector machine classifiers using the set of labelers (one labeler per classifier). The objective functions representing the boundary decision of each classifier are mixed by means of a linear combination. Followed from a variable relevance, the weighting factors are calculated regarding kernel matrices representing each labeler. To do so, a so-called supervised kernel function is also introduced, which is used to construct kernel matrices. Our multi-labeler method reaches very good results being a suitable alternative to conventional approaches.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 50 条
  • [1] Learning Sparse Kernel Classifiers for Multi-Instance Classification
    Fu, Zhouyu
    Lu, Guojun
    Ting, Kai Ming
    Zhang, Dengsheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (09) : 1377 - 1389
  • [2] Deontic Sentence Classification Using Tree Kernel Classifiers
    Liga, Davide
    Palmirani, Monica
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2023, 542 : 54 - 73
  • [3] Classification of microarray data using kernel based classifiers
    Swati S.
    Kumar M.
    Mishra R.K.
    Revue d'Intelligence Artificielle, 2019, 33 (03) : 235 - 247
  • [4] Classification with Kernel Mahalanobis Distance Classifiers
    Haasdonk, Bernard
    Pekalska, Elzbieta
    ADVANCES IN DATA ANALYSIS, DATA HANDLING AND BUSINESS INTELLIGENCE, 2010, : 351 - +
  • [5] Multi-kernel regularized classifiers
    Wu, Qiang
    Ying, Yiming
    Zhou, Ding-Xuan
    JOURNAL OF COMPLEXITY, 2007, 23 (01) : 108 - 134
  • [6] Task-based Classification of Reflective Thinking Using Mixture of Classifiers
    Aathreya, Saandeep
    Jivnani, Liza
    Srivastava, Shivam
    Hinduja, Saurabh
    Canavan, Shaun
    2021 9TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS (ACIIW), 2021,
  • [7] Classification and grading of diabetic retinopathy images using mixture of ensemble classifiers
    Bhuvaneswari, R.
    Vaidyanathan, S. Ganesh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 7407 - 7419
  • [8] Active Learning for Hyperspectral Image Classification Using Kernel Sparse Representation Classifiers
    Bortiew, Amos
    Patra, Swarnajyoti
    Bruzzone, Lorenzo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [9] Adaptive Convolution Kernel for Text Classification via Multi-channel Representations
    Wang, Cheng
    Fan, Xiaoyan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II, 2020, 12397 : 708 - 720
  • [10] Kernel mixture model for probability density estimation in Bayesian classifiers
    Zhang, Wenyu
    Zhang, Zhenjiang
    Chao, Han-Chieh
    Tseng, Fan-Hsun
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (03) : 675 - 707