Deontic Sentence Classification Using Tree Kernel Classifiers

被引:1
|
作者
Liga, Davide [1 ,2 ]
Palmirani, Monica [1 ]
机构
[1] Univ Bologna, Alma Mater Studiorum, Alma Mater Res Inst Human Ctr Artificial Intellig, CIRSFID AI, Bologna, Italy
[2] Univ Luxembourg, Esch Sur Alzette, Luxembourg
关键词
Deontic; NLP; Legal AI; GDPR; LegalRuleML; Akoma Ntoso; EXTRACTION;
D O I
10.1007/978-3-031-16072-1_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this work is to employ Tree Kernel algorithms to classify natural language in the legal domain (i.e. deontic sentences and rules). More precisely, an innovative way of extracting labelled legal data is proposed, which combines the information provided by two famous Lega1XML formats: Akoma Ntoso and LegalRuleML. We then applied this method on the European General Data Protection Regulation (GDPR) to train a Tree Kernel classifier on deontic and non-deontic sentences which were reconstructed using Akoma Ntoso, and labelled using the LegalRuleML representation of the GDPR. To prove the non-triviality of the task we reported the results of a stratified baseline classifier on two classification scenarios.
引用
收藏
页码:54 / 73
页数:20
相关论文
共 50 条
  • [1] Color image classification using tree classifiers
    Schettini, R
    Brambilla, C
    Ciocca, G
    De Ponti, M
    SEVENTH COLOR IMAGING CONFERENCE: COLOR SCIENCE, SYSTEMS AND APPLICATIONS: PUTTING IT ALL TOGETHER, 1999, : 269 - 272
  • [2] Classification of microarray data using kernel based classifiers
    Swati S.
    Kumar M.
    Mishra R.K.
    Revue d'Intelligence Artificielle, 2019, 33 (03) : 235 - 247
  • [3] Classification with Kernel Mahalanobis Distance Classifiers
    Haasdonk, Bernard
    Pekalska, Elzbieta
    ADVANCES IN DATA ANALYSIS, DATA HANDLING AND BUSINESS INTELLIGENCE, 2010, : 351 - +
  • [4] Multi-Label Classification Using Binary Tree of Classifiers
    Law, Anwesha
    Ghosh, Ashish
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (03): : 677 - 689
  • [5] Multi-labeler Classification Using Kernel Representations and Mixture of Classifiers
    Imbajoa-Ruiz, D. E.
    Gustin, I. D.
    Bolanos-Ledezma, M.
    Arciniegas-Mejia, A. F.
    Guasmayan-Guasmayan, F. A.
    Bravo-Montenegro, M. J.
    Castro-Ospina, A. E.
    Peluffo-Ordonez, D. H.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2016, 2017, 10125 : 343 - 351
  • [6] Decision tree classifiers for mass classification
    Nithya, R.
    Santhi, B.
    INTERNATIONAL JOURNAL OF SIGNAL AND IMAGING SYSTEMS ENGINEERING, 2015, 8 (1-2) : 39 - 45
  • [7] Classification of Control and Neurodegenerative Disease Subjects Using Tree Based Classifiers
    Shah, Syed Ahsin Ali
    Habib, Nazneen
    Aziz, Wajid
    Khan, Ehsan Ullah
    Nadeem, Malik Sajjad Ahmed
    JOURNAL OF PHARMACEUTICAL RESEARCH INTERNATIONAL, 2020, 32 (11) : 63 - 73
  • [8] Active Learning for Hyperspectral Image Classification Using Kernel Sparse Representation Classifiers
    Bortiew, Amos
    Patra, Swarnajyoti
    Bruzzone, Lorenzo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [9] Human activity classification using Decision Tree and Naive Bayes classifiers
    Maswadi, Kholoud
    Ghani, Norjihan Abdul
    Hamid, Suraya
    Rasheed, Muhammads Babar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (14) : 21709 - 21726
  • [10] Surface EMG Signal Classification by Using WPD and Ensemble Tree Classifiers
    Abdullah, Amnah A.
    Subasi, Abdulhamit
    Qaisar, Saeed Mian
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING 2017 (CMBEBIH 2017), 2017, 62 : 475 - 481