FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS

被引:71
|
作者
Rajaratnam, Bala [1 ]
Massam, Helene [2 ]
Carvalho, Carlos M. [3 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[3] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
来源
ANNALS OF STATISTICS | 2008年 / 36卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
Covariance estimation; Gaussian graphical models; Bayes estimators; shrinkage; regularization;
D O I
10.1214/08-AOS619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a class of Bayes estimators for the covariance matrix of graphical Gaussian models Markov with respect to a decomposable graph G. Working with the W-PG family defined by Letac and Massam [Ann. Statist. 35 (2007) 1278-1323] we derive closed-form expressions for Bayes estimators under the entropy and squared-error losses. The W-PG family includes the classical inverse of the hyper inverse Wishart but has many more shape parameters, thus allowing for flexibility in differentially shrinking various parts of the covariance matrix. Moreover, using this family avoids recourse to MCMC, often infeasible in high-dimensional problems. We illustrate the performance of our estimators through a collection of numerical examples where we explore frequentist risk properties and the efficacy of graphs in the estimation of high-dimensional covariance structures.
引用
收藏
页码:2818 / 2849
页数:32
相关论文
共 50 条