FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS

被引:73
|
作者
Rajaratnam, Bala [1 ]
Massam, Helene [2 ]
Carvalho, Carlos M. [3 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[3] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
来源
ANNALS OF STATISTICS | 2008年 / 36卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
Covariance estimation; Gaussian graphical models; Bayes estimators; shrinkage; regularization;
D O I
10.1214/08-AOS619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a class of Bayes estimators for the covariance matrix of graphical Gaussian models Markov with respect to a decomposable graph G. Working with the W-PG family defined by Letac and Massam [Ann. Statist. 35 (2007) 1278-1323] we derive closed-form expressions for Bayes estimators under the entropy and squared-error losses. The W-PG family includes the classical inverse of the hyper inverse Wishart but has many more shape parameters, thus allowing for flexibility in differentially shrinking various parts of the covariance matrix. Moreover, using this family avoids recourse to MCMC, often infeasible in high-dimensional problems. We illustrate the performance of our estimators through a collection of numerical examples where we explore frequentist risk properties and the efficacy of graphs in the estimation of high-dimensional covariance structures.
引用
收藏
页码:2818 / 2849
页数:32
相关论文
共 50 条
  • [21] Bayesian covariance estimation and inference in latent Gaussian process models
    Earls, Cecilia
    Hooker, Giles
    STATISTICAL METHODOLOGY, 2014, 18 : 79 - 100
  • [22] ASYMPTOTIC NORMALITY AND OPTIMALITIES IN ESTIMATION OF LARGE GAUSSIAN GRAPHICAL MODELS
    Ren, Zhao
    Sun, Tingni
    Zhang, Cun-Hui
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2015, 43 (03): : 991 - 1026
  • [23] Approximate Bayesian estimation in large coloured graphical Gaussian models
    Li, Qiong
    Gao, Xin
    Massam, Helene
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (01): : 176 - 203
  • [24] PERFORMANCE BOUNDS FOR SPARSE PARAMETRIC COVARIANCE ESTIMATION IN GAUSSIAN MODELS
    Jung, Alexander
    Schmutzhard, Sebastian
    Hlawatsch, Franz
    Hero, Alfred O., III
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4156 - 4159
  • [25] Unified Framework to Regularized Covariance Estimation in Scaled Gaussian Models
    Wiesel, Ami
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) : 18 - 27
  • [26] Covariance estimation for multivariate conditionally Gaussian dynamic linear models
    Triantafyllopoulos, K.
    JOURNAL OF FORECASTING, 2007, 26 (08) : 551 - 569
  • [27] On Joint Estimation of Gaussian Graphical Models for Spatial and Temporal Data
    Lin, Zhixiang
    Wang, Tao
    Yang, Can
    Zhao, Hongyu
    BIOMETRICS, 2017, 73 (03) : 769 - 779
  • [28] Consistent multiple changepoint estimation with fused Gaussian graphical models
    Gibberd, A.
    Roy, S.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (02) : 283 - 309
  • [29] Quasi-Bayesian estimation of large Gaussian graphical models
    Atchade, Yves F.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 656 - 671
  • [30] Estimation of Sparse Gaussian Graphical Models with Hidden Clustering Structure
    Lin, Meixia
    Sun, Defeng
    Toh, Kim-Chuan
    Wang, Chengjing
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 36