FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS

被引:71
|
作者
Rajaratnam, Bala [1 ]
Massam, Helene [2 ]
Carvalho, Carlos M. [3 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[3] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
来源
ANNALS OF STATISTICS | 2008年 / 36卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
Covariance estimation; Gaussian graphical models; Bayes estimators; shrinkage; regularization;
D O I
10.1214/08-AOS619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a class of Bayes estimators for the covariance matrix of graphical Gaussian models Markov with respect to a decomposable graph G. Working with the W-PG family defined by Letac and Massam [Ann. Statist. 35 (2007) 1278-1323] we derive closed-form expressions for Bayes estimators under the entropy and squared-error losses. The W-PG family includes the classical inverse of the hyper inverse Wishart but has many more shape parameters, thus allowing for flexibility in differentially shrinking various parts of the covariance matrix. Moreover, using this family avoids recourse to MCMC, often infeasible in high-dimensional problems. We illustrate the performance of our estimators through a collection of numerical examples where we explore frequentist risk properties and the efficacy of graphs in the estimation of high-dimensional covariance structures.
引用
收藏
页码:2818 / 2849
页数:32
相关论文
共 50 条
  • [1] Distributed Covariance Estimation in Gaussian Graphical Models
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) : 211 - 220
  • [2] Covariance Estimation in Decomposable Gaussian Graphical Models
    Wiesel, Ami
    Eldar, Yonina C.
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1482 - 1492
  • [3] High-dimensional Covariance Estimation Based On Gaussian Graphical Models
    Zhou, Shuheng
    Ruetimann, Philipp
    Xu, Min
    Buehlmann, Peter
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 2975 - 3026
  • [4] Covariance decomposition in undirected Gaussian graphical models
    Jones, B
    West, M
    [J]. BIOMETRIKA, 2005, 92 (04) : 779 - 786
  • [5] Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries
    Massam, H.
    Li, Q.
    Gao, X.
    [J]. BIOMETRIKA, 2018, 105 (02) : 371 - 388
  • [6] Graphical methods for efficient likelihood inference in Gaussian covariance models
    Drton, Mathias
    Richardson, Thomas S.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 893 - 914
  • [7] The cluster graphical lasso for improved estimation of Gaussian graphical models
    Tan, Kean Ming
    Witten, Daniela
    Shojaie, Ali
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 85 : 23 - 36
  • [8] Optimal Covariance Selection for Estimation Using Graphical Models
    Vichik, Sergey
    Oshman, Yaakov
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 5049 - 5054
  • [9] On some algorithms for estimation in Gaussian graphical models
    Hojsgaard, S.
    Lauritzen, S.
    [J]. BIOMETRIKA, 2024,
  • [10] ESTIMATION OF MEANS IN GRAPHICAL GAUSSIAN MODELS WITH SYMMETRIES
    Gehrmann, Helene
    Lauritzen, Steffen L.
    [J]. ANNALS OF STATISTICS, 2012, 40 (02): : 1061 - 1073