Graphical methods for efficient likelihood inference in Gaussian covariance models

被引:0
|
作者
Drton, Mathias [1 ]
Richardson, Thomas S. [2 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
ancestral graph; covariance graph; graphical model; marginal independence; maximum likelihood estimation; multivariate normal distribution;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In graphical modelling, a bi-directed graph encodes marginal independences among random variables that are identified with the vertices of the graph. We show how to transform a bi-directed graph into a maximal ancestral graph that (i) represents the same independence structure as the original bi-directed graph, and (ii) minimizes the number of arrowheads among all ancestral graphs satisfying (i). Here the number of arrowheads of an ancestral graph is the number of directed edges plus twice the number of bi-directed edges. In Gaussian models, this construction can be used for more efficient iterative maximization of the likelihood function and to determine when maximum likelihood estimates are equal to empirical counterparts.
引用
收藏
页码:893 / 914
页数:22
相关论文
共 50 条
  • [1] Gaussian inference in loopy graphical models
    Plarre, K
    Kumar, PR
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 5747 - 5752
  • [2] Covariance decomposition in undirected Gaussian graphical models
    Jones, B
    West, M
    [J]. BIOMETRIKA, 2005, 92 (04) : 779 - 786
  • [3] Distributed Covariance Estimation in Gaussian Graphical Models
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) : 211 - 220
  • [4] FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS
    Rajaratnam, Bala
    Massam, Helene
    Carvalho, Carlos M.
    [J]. ANNALS OF STATISTICS, 2008, 36 (06): : 2818 - 2849
  • [5] Covariance Estimation in Decomposable Gaussian Graphical Models
    Wiesel, Ami
    Eldar, Yonina C.
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1482 - 1492
  • [6] Bayesian Inference of Multiple Gaussian Graphical Models
    Peterson, Christine
    Stingo, Francesco C.
    Vannucci, Marina
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 159 - 174
  • [7] GEOMETRY OF MAXIMUM LIKELIHOOD ESTIMATION IN GAUSSIAN GRAPHICAL MODELS
    Uhler, Caroline
    [J]. ANNALS OF STATISTICS, 2012, 40 (01): : 238 - 261
  • [8] Maximum likelihood estimation for linear Gaussian covariance models
    Zwiernik, Piotr
    Uhler, Caroline
    Richards, Donald
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (04) : 1269 - 1292
  • [9] Penalized composite likelihood for colored graphical Gaussian models
    Li, Qiong
    Sun, Xiaoying
    Wang, Nanwei
    Gao, Xin
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (04) : 366 - 378
  • [10] Recursive FMP for Distributed Inference in Gaussian Graphical Models
    Liu, Ying
    Willsky, Alan S.
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 2483 - 2487