Gaussian inference in loopy graphical models

被引:0
|
作者
Plarre, K [1 ]
Kumar, PR [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show precisely that message passing for inference in Gaussian graphical models on singly connected graphs is just a distributed implementation of Gaussian elimination without any need for backsubstitution. This observation allows us to generalize the procedure to arbitrary loopy Gaussian graphical models. We thus construct a message passing algorithm that is guaranteed to converge in finite time, and solve the inference problem exactly. The complexity of this algorithm grows gradually with the "distance" of the graph to a tree. This algorithm can be implemented in a distributed environment as, for example, in sensor networks.
引用
收藏
页码:5747 / 5752
页数:6
相关论文
共 50 条
  • [1] Quantifying Nonlocal Informativeness in High-Dimensional, Loopy Gaussian Graphical Models
    Levine, Daniel
    How, Jonathan P.
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 487 - 495
  • [2] Bayesian Inference of Multiple Gaussian Graphical Models
    Peterson, Christine
    Stingo, Francesco C.
    Vannucci, Marina
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 159 - 174
  • [3] Recursive FMP for Distributed Inference in Gaussian Graphical Models
    Liu, Ying
    Willsky, Alan S.
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 2483 - 2487
  • [4] Fast Bayesian inference in large Gaussian graphical models
    Leday, Gwenael G. R.
    Richardson, Sylvia
    [J]. BIOMETRICS, 2019, 75 (04) : 1288 - 1298
  • [5] Feedback Message Passing for Inference in Gaussian Graphical Models
    Liu, Ying
    Chandrasekaran, Venkat
    Anandkumar, Animashree
    Willsky, Alan S.
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1683 - 1687
  • [6] Feedback Message Passing for Inference in Gaussian Graphical Models
    Liu, Ying
    Chandrasekaran, Venkat
    Anandkumar, Animashree
    Willsky, Alan S.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 4135 - 4150
  • [7] Comparison of two inference approaches in Gaussian graphical models
    Purutcuoglu, Vilda
    Ayyildiz, Ezgi
    Wit, Ernst
    [J]. TURKISH JOURNAL OF BIOCHEMISTRY-TURK BIYOKIMYA DERGISI, 2017, 42 (02): : 203 - 211
  • [8] The Wrong Tool for Inference A Critical View of Gaussian Graphical Models
    Keane, Kevin R.
    Corso, Jason J.
    [J]. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM 2018), 2018, : 470 - 477
  • [9] Bayesian inference for Gaussian graphical models beyond decomposable graphs
    Khare, Kshitij
    Rajaratnam, Bala
    Saha, Abhishek
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (04) : 727 - 747
  • [10] Bayesian inference of clustering and multiple Gaussian graphical models selection
    Wei Dai
    Baisuo Jin
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 422 - 440