Gaussian inference in loopy graphical models

被引:0
|
作者
Plarre, K [1 ]
Kumar, PR [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show precisely that message passing for inference in Gaussian graphical models on singly connected graphs is just a distributed implementation of Gaussian elimination without any need for backsubstitution. This observation allows us to generalize the procedure to arbitrary loopy Gaussian graphical models. We thus construct a message passing algorithm that is guaranteed to converge in finite time, and solve the inference problem exactly. The complexity of this algorithm grows gradually with the "distance" of the graph to a tree. This algorithm can be implemented in a distributed environment as, for example, in sensor networks.
引用
下载
收藏
页码:5747 / 5752
页数:6
相关论文
共 50 条
  • [41] Incremental Inference of Collective Graphical Models
    Singh, Rahul
    Haasler, Isabel
    Zhang, Qinsheng
    Karlsson, Johan
    Chen, Yongxin
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 421 - 426
  • [42] Inference of compressed Potts graphical models
    Rizzato, Francesca
    Coucke, Alice
    de Leonardis, Eleonora
    Barton, John P.
    Tubiana, Jerome
    Monasson, Remi
    Cocco, Simona
    PHYSICAL REVIEW E, 2020, 101 (01)
  • [43] Statistical inference with probabilistic graphical models
    Shah, Devavrat
    STATISTICAL PHYSICS, OPTIMIZATION, INFERENCE, AND MESSAGE-PASSING ALGORITHMS, 2016, : 1 - 27
  • [44] Fast Inference for Probabilistic Graphical Models
    Jiang, Jiantong
    Wen, Zeyi
    Mansoor, Atif
    Mian, Ajmal
    PROCEEDINGS OF THE 2024 USENIX ANNUAL TECHNICAL CONFERENCE, ATC 2024, 2024, : 95 - 110
  • [45] Adaptive Exact Inference in Graphical Models
    Suemer, Oezguer
    Acar, Umut A.
    Ihler, Alexander T.
    Mettu, Ramgopal R.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3147 - 3186
  • [46] Bayesian Inference in Nonparanormal Graphical Models
    Mulgrave, Jami J.
    Ghosal, Subhashis
    BAYESIAN ANALYSIS, 2020, 15 (02): : 449 - 475
  • [47] Graphical Causal Models for Survey Inference
    Schuessler, Julian
    Selb, Peter
    SOCIOLOGICAL METHODS & RESEARCH, 2023,
  • [48] Proper Quaternion Gaussian Graphical Models
    Sloin, Alba
    Wiesel, Ami
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (20) : 5487 - 5496
  • [49] Testing Unfaithful Gaussian Graphical Models
    Soh, De Wen
    Tatikonda, Sekhar
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [50] TREK SEPARATION FOR GAUSSIAN GRAPHICAL MODELS
    Sullivant, Seth
    Talaska, Kelli
    Draisma, Jan
    ANNALS OF STATISTICS, 2010, 38 (03): : 1665 - 1685