Identification of behavioural model input data sets for WWTP uncertainty analysis

被引:4
|
作者
Lindblom, E. [1 ,2 ]
Jeppsson, U. [1 ]
Sin, G. [3 ]
机构
[1] Lund Univ, Div Ind Elect Engn & Automat IEA, Lund, Sweden
[2] IVL Swedish Environm Res Inst, Stockholm, Sweden
[3] Tech Univ Denmark, Dept Chem & Biochem Engn, Proc & Syst Engn Ctr PROSYS, DK-2800 Lyngby, Denmark
关键词
BSM; calibration; influent data; Monte Carlo simulation; modelling; CALIBRATION;
D O I
10.2166/wst.2019.427
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Uncertainty analysis is important for wastewater treatment plant (WWTP) model applications. An important aspect of uncertainty analysis is the identification and proper quantification of sources of uncertainty. In this contribution, a methodology to identify an ensemble of behavioural model representations (combinations of input data, model structure and parameter values) is presented and evaluated. The outcome is a multivariate conditional distribution of input data that is used for generating samples of likely inputs (such as Monte Carlo input samples) to perform WWTP model uncertainty analysis. This article presents an approach to verify uncertainty distributions of input data (otherwise often assumed) by using historical observations and actual plant data.
引用
收藏
页码:1558 / 1568
页数:11
相关论文
共 50 条
  • [41] A unified model of data uncertainty and data relation uncertainty
    Liao, Mingxue
    Shen, Dong
    Lv, Pin
    KNOWLEDGE-BASED SYSTEMS, 2023, 278
  • [42] Activated sludge model 2d calibration with full-scale WWTP data: comparing model parameter identifiability with influent and operational uncertainty
    Cunha Machado, Vinicius
    Lafuente, Javier
    Antonio Baeza, Juan
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2014, 37 (07) : 1271 - 1287
  • [43] Activated sludge model 2d calibration with full-scale WWTP data: comparing model parameter identifiability with influent and operational uncertainty
    Vinicius Cunha Machado
    Javier Lafuente
    Juan Antonio Baeza
    Bioprocess and Biosystems Engineering, 2014, 37 : 1271 - 1287
  • [44] Accounting for input model and parameter uncertainty in simulation
    Zouaoui, F
    Wilson, JR
    WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 290 - 299
  • [45] A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling
    Yen, Haw
    Wang, Xiuying
    Fontane, Darrell G.
    Harmel, R. Daren
    Arabi, Mazdak
    ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 54 : 211 - 221
  • [46] Comparing Fuzzy Sets and Random Sets to Model the Uncertainty of Fuzzy Shorelines
    Dewi, Ratna Sari
    Bijker, Wietske
    Stein, Alfred
    REMOTE SENSING, 2017, 9 (09):
  • [47] Engaging uncertainty in hydrologic data sets using principal component analysis: BaNPCA algorithm
    Tripathi, Shivam
    Govindaraju, Rao S.
    WATER RESOURCES RESEARCH, 2008, 44 (10)
  • [48] Behavioural Analytics: Exploring judgments and choices in large data sets
    Durbach, Ian N.
    Montibeller, Gilberto
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2019, 70 (02) : 255 - 268
  • [49] Uncertainty quantification of input matrices and transfer function in input/output subspace system identification
    Gres, Szymon
    Dohler, Michael
    Jacobsen, Niels-Jorgen
    Mevel, Laurent
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 167
  • [50] LIKELIHOOD ANALYSIS OF A MODEL FOR NEURONAL INPUT-OUTPUT DATA
    BREEZE, P
    EMHEMED, YM
    HALLIDAY, DM
    ROSENBERG, JR
    JOURNAL OF PHYSIOLOGY-LONDON, 1994, 479P : P112 - P113