Identification of behavioural model input data sets for WWTP uncertainty analysis

被引:4
|
作者
Lindblom, E. [1 ,2 ]
Jeppsson, U. [1 ]
Sin, G. [3 ]
机构
[1] Lund Univ, Div Ind Elect Engn & Automat IEA, Lund, Sweden
[2] IVL Swedish Environm Res Inst, Stockholm, Sweden
[3] Tech Univ Denmark, Dept Chem & Biochem Engn, Proc & Syst Engn Ctr PROSYS, DK-2800 Lyngby, Denmark
关键词
BSM; calibration; influent data; Monte Carlo simulation; modelling; CALIBRATION;
D O I
10.2166/wst.2019.427
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Uncertainty analysis is important for wastewater treatment plant (WWTP) model applications. An important aspect of uncertainty analysis is the identification and proper quantification of sources of uncertainty. In this contribution, a methodology to identify an ensemble of behavioural model representations (combinations of input data, model structure and parameter values) is presented and evaluated. The outcome is a multivariate conditional distribution of input data that is used for generating samples of likely inputs (such as Monte Carlo input samples) to perform WWTP model uncertainty analysis. This article presents an approach to verify uncertainty distributions of input data (otherwise often assumed) by using historical observations and actual plant data.
引用
收藏
页码:1558 / 1568
页数:11
相关论文
共 50 条
  • [31] The Cubic Bipolar Neutrosophic Sets theory and Uncertainty Management in Environmental Data Analysis
    Salama, A.A.
    Khalid, Huda E.
    Mabrouk, Ahmed G.
    Neutrosophic Sets and Systems, 2024, 72 : 60 - 133
  • [32] SM identification of model sets for robust control design from data
    Milanese, M
    Taragna, M
    ROBUSTNESS IN IDENTIFICATION AND CONTROL, 1999, 245 : 17 - 34
  • [33] Advertising data analysis using rough sets model
    Kumar, A
    Agrawal, DP
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2005, 4 (02) : 263 - 276
  • [34] Support vector regression with input data uncertainty
    Zhong, Ping
    Wang, Laisheng
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (09): : 2325 - 2332
  • [35] A Method for the Analysis of Behavioural Uncertainty in Evacuation Modelling
    Enrico Ronchi
    Paul A. Reneke
    Richard D. Peacock
    Fire Technology, 2014, 50 : 1545 - 1571
  • [36] TUTORIAL: INPUT UNCERTAINTY IN OUTOUT ANALYSIS
    Barton, Russell R.
    2012 WINTER SIMULATION CONFERENCE (WSC), 2012,
  • [37] A model of fuzzy automats with variable input sets
    Ficzko, J
    Zimic, N
    Virant, J
    COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION - EVOLUTIONARY COMPUTATION & FUZZY LOGIC FOR INTELLIGENT CONTROL, KNOWLEDGE ACQUISITION & INFORMATION RETRIEVAL, 1999, 55 : 260 - 264
  • [38] A Method for the Analysis of Behavioural Uncertainty in Evacuation Modelling
    Ronchi, Enrico
    Reneke, Paul A.
    Peacock, Richard D.
    FIRE TECHNOLOGY, 2014, 50 (06) : 1545 - 1571
  • [39] Uncertainty identification for a nominal LPV vehicle model based on experimental data
    Rodonyi, Gabor
    Bokor, Jozsef
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 2682 - 2687
  • [40] Rare event analysis considering data and model uncertainty
    El-Gheriani M.
    Khan F.
    Zuo M.J.
    Khan, Faisal (fikhan@mun.ca), 1600, American Society of Mechanical Engineers (ASME), United States (03):