Identification of behavioural model input data sets for WWTP uncertainty analysis

被引:4
|
作者
Lindblom, E. [1 ,2 ]
Jeppsson, U. [1 ]
Sin, G. [3 ]
机构
[1] Lund Univ, Div Ind Elect Engn & Automat IEA, Lund, Sweden
[2] IVL Swedish Environm Res Inst, Stockholm, Sweden
[3] Tech Univ Denmark, Dept Chem & Biochem Engn, Proc & Syst Engn Ctr PROSYS, DK-2800 Lyngby, Denmark
关键词
BSM; calibration; influent data; Monte Carlo simulation; modelling; CALIBRATION;
D O I
10.2166/wst.2019.427
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Uncertainty analysis is important for wastewater treatment plant (WWTP) model applications. An important aspect of uncertainty analysis is the identification and proper quantification of sources of uncertainty. In this contribution, a methodology to identify an ensemble of behavioural model representations (combinations of input data, model structure and parameter values) is presented and evaluated. The outcome is a multivariate conditional distribution of input data that is used for generating samples of likely inputs (such as Monte Carlo input samples) to perform WWTP model uncertainty analysis. This article presents an approach to verify uncertainty distributions of input data (otherwise often assumed) by using historical observations and actual plant data.
引用
收藏
页码:1558 / 1568
页数:11
相关论文
共 50 条
  • [21] A FRAMEWORK FOR INPUT UNCERTAINTY ANALYSIS
    Barton, Russell R.
    Nelson, Barry L.
    Xie, Wei
    PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE, 2010, : 1189 - 1198
  • [22] Estimating non-convex production sets - imposing convex input sets and output sets in data envelopment analysis
    Post, T
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 131 (01) : 132 - 142
  • [23] Uncertainty analysis and evaluation of a complex, multi-specific weed dynamics model with diverse and incomplete data sets
    Colbach, Nathalie
    Bertrand, Michel
    Busset, Hugues
    Colas, Floriane
    Dugue, Francois
    Farcy, Pascal
    Fried, Guillaume
    Granger, Sylvie
    Meunier, Dominique
    Munier-Jolain, Nicolas M.
    Noilhan, Camille
    Strbik, Florence
    Gardarin, Antoine
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 86 : 184 - 203
  • [24] Applying Bayesian model averaging for uncertainty estimation of input data in energy modelling
    Culka M.
    Energy, Sustainability and Society, 4 (1)
  • [25] Water quality model output uncertainty as affected by spatial resolution of input data
    Cotter, AS
    Chaubey, I
    Costello, TA
    Soerens, TS
    Nelson, MA
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2003, 39 (04): : 977 - 986
  • [26] Analysis of linear systems with input saturation and model uncertainty: An LMI approach
    Mukhejee, Saumyajyoti
    Patra, Sourav
    Sen, Siddhartha
    2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 2565 - +
  • [27] Identification of a driver steering model, and model uncertainty, from driving simulator data
    Chen, LK
    Ulsoy, AG
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2001, 123 (04): : 623 - 629
  • [28] Uncertainty analysis of estuarine hydrodynamic models: an evaluation of input data uncertainty in the weeks bay estuary, alabama
    Camacho, Rene A.
    Martin, James L.
    Diaz-Ramirez, Jairo
    McAnally, William
    Rodriguez, Hugo
    Suscy, Peter
    Zhang, Song
    APPLIED OCEAN RESEARCH, 2014, 47 : 138 - 153
  • [29] IDENTIFICATION OF NOISE IN LINEAR DATA SETS BY FACTOR-ANALYSIS
    ROSCOE, BA
    HOPKE, PK
    JOURNAL OF RADIOANALYTICAL CHEMISTRY, 1982, 70 (1-2): : 483 - 495
  • [30] Eliciting Welfare Preferences from Behavioural Data Sets
    Rubinstein, Ariel
    Salant, Yuval
    REVIEW OF ECONOMIC STUDIES, 2012, 79 (01): : 375 - 387