A Sharp Sobolev Interpolation Inequality on Finsler Manifolds

被引:4
|
作者
Kristaly, Alexandru [1 ,2 ,3 ]
机构
[1] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
[2] Obuda Univ, Inst Appl Math, H-1034 Budapest, Hungary
[3] Budapest Tech Polytech Inst, H-1034 Budapest, Hungary
关键词
Sobolev interpolation inequality; Sharp constant; Finsler manifold; Minkowski space; Ricci curvature; Rigidity; RIEMANNIAN-MANIFOLDS; HARDY;
D O I
10.1007/s12220-014-9510-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a sharp Sobolev interpolation inequality on Finsler manifolds. We show that Minkowski spaces represent the optimal framework for the Sobolev interpolation inequality on a large class of Finsler manifolds: (1) Minkowski spaces support the sharp Sobolev interpolation inequality; (2) any complete Berwald space with non-negative Ricci curvature which supports the sharp Sobolev interpolation inequality is isometric to a Minkowski space. The proofs are based on properties of the Finsler-Laplace operator and on the Finslerian Bishop-Gromov volume comparison theorem.
引用
收藏
页码:2226 / 2240
页数:15
相关论文
共 50 条