Effect of the random field on the dynamics of pulsating, erupting, and creeping solitons in the cubic-quintic complex Ginzburg-Landau equation

被引:2
|
作者
Hong, Woo-Pyo [1 ]
机构
[1] Catholic Univ Daegu, Dept Elect Engn, Hayang 712702, Gyongsan, South Korea
关键词
pulsating; erupting; and creeping solitons; random field; fixed-shape soliton;
D O I
10.1515/zna-2006-1202
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is shown that the dynamics of pulsating, erupting, and creeping (PEC) solitons obtained from the one-dimensional cubic-quintic complex Ginzburg-Landau equation can be drastically modified in the presence of a random background field. It is found that, when the random field is applied to a pulse-like initial profile, multiple soliton trains are formed for the parameters of the pulsating and erupting solitons. Furthermore, as the strength of the gain term increases, the multiple pulsating or erupting solitons transform into fixed-shape stable solitons. This may be important for a practical use such as to generate stable fermosecond pulses. For the case of creeping soliton parameters, the presence of the random field does not generate multiple solitons, however, it induces a rapidly twisting or traveling soliton with a fixed-shape, of which stability can be also controlled by the gain term. PACS numbers: 42.65.Tg, 03.40.Kf, 05.70.Ln, 47.20.Ky.
引用
收藏
页码:615 / 623
页数:9
相关论文
共 50 条
  • [21] Bifurcation to traveling waves in the cubic-quintic complex Ginzburg-Landau equation
    Park, Jungho
    Strzelecki, Philip
    ANALYSIS AND APPLICATIONS, 2015, 13 (04) : 395 - 411
  • [22] Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation
    Xu, PC
    Chang, QS
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1161 - 1170
  • [23] On a cubic-quintic Ginzburg-Landau equation with global coupling
    Wei, JC
    Winter, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1787 - 1796
  • [24] Ultrashort optical solitons in the cubic-quintic complex Ginzburg-Landau equation with higher-order terms
    Fewo, Serge I.
    Ngabireng, Claude M.
    Kofane, Timoleon C.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (07)
  • [25] Existence Conditions for Stable Stationary Solitons of the Cubic-Quintic Complex Ginzburg-Landau Equation with a Viscosity Term
    Hong, Woo-Pyo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (12): : 757 - 762
  • [26] Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions
    Cisternas, Jaime
    Descalzi, Orazio
    Albers, Tony
    Radons, Guenter
    PHYSICAL REVIEW LETTERS, 2016, 116 (20)
  • [27] Evolution of cubic-quintic complex Ginzburg-Landau erupting solitons under the effect of third-order dispersion and intrapulse Raman scattering
    Carvalho, M. I.
    Facao, M.
    PHYSICS LETTERS A, 2012, 376 (8-9) : 950 - 956
  • [28] Breathing Solitons for the One-Dimensional Nonlinear Cubic-Quintic Complex Ginzburg-Landau Equation (cqCGLE)
    Razali, Nur Shafika Abel
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 131 - 136
  • [29] Meromorphic Traveling Wave Solutions of the Complex Cubic-Quintic Ginzburg-Landau Equation
    Conte, Robert
    Ng, Tuen-Wai
    ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 153 - 166
  • [30] Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation
    Gutierrez, Pablo
    Escaff, Daniel
    Descalzi, Orazio
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1901): : 3227 - 3238