Effect of the random field on the dynamics of pulsating, erupting, and creeping solitons in the cubic-quintic complex Ginzburg-Landau equation

被引:2
|
作者
Hong, Woo-Pyo [1 ]
机构
[1] Catholic Univ Daegu, Dept Elect Engn, Hayang 712702, Gyongsan, South Korea
关键词
pulsating; erupting; and creeping solitons; random field; fixed-shape soliton;
D O I
10.1515/zna-2006-1202
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is shown that the dynamics of pulsating, erupting, and creeping (PEC) solitons obtained from the one-dimensional cubic-quintic complex Ginzburg-Landau equation can be drastically modified in the presence of a random background field. It is found that, when the random field is applied to a pulse-like initial profile, multiple soliton trains are formed for the parameters of the pulsating and erupting solitons. Furthermore, as the strength of the gain term increases, the multiple pulsating or erupting solitons transform into fixed-shape stable solitons. This may be important for a practical use such as to generate stable fermosecond pulses. For the case of creeping soliton parameters, the presence of the random field does not generate multiple solitons, however, it induces a rapidly twisting or traveling soliton with a fixed-shape, of which stability can be also controlled by the gain term. PACS numbers: 42.65.Tg, 03.40.Kf, 05.70.Ln, 47.20.Ky.
引用
收藏
页码:615 / 623
页数:9
相关论文
共 50 条
  • [41] Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    Leblond, H.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [42] Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    Leblond, H.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [43] Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion
    SotoCrespo, JM
    Akhmediev, NN
    Afanasjev, VV
    Wabnitz, S
    PHYSICAL REVIEW E, 1997, 55 (04) : 4783 - 4796
  • [44] The complex cubic-quintic Ginzburg-Landau equation: Hopf bifurcations yielding traveling waves
    Mancas, Stefan C.
    Choudhury, S. Roy
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (4-5) : 281 - 291
  • [45] Influence of boundary conditions on localized solutions of the cubic-quintic complex Ginzburg-Landau equation
    Descalzi, Orazio
    Brand, Helmut R.
    PROGRESS OF THEORETICAL PHYSICS, 2008, 119 (05): : 725 - 738
  • [46] Bifurcations of plane wave (CW) solutions in the complex cubic-quintic Ginzburg-Landau equation
    Mancas, Stefan C.
    Choudhury, S. Roy
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (4-5) : 266 - 280
  • [47] Nonlinear diffusion control of defect turbulence in cubic-quintic complex Ginzburg-Landau equation
    J. B. Gonpe Tafo
    L. Nana
    T. C. Kofane
    The European Physical Journal Plus, 127
  • [48] Motion of pulses and vortices in the cubic-quintic complex Ginzburg-Landau equation without viscosity
    Sakaguchi, H
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 210 (1-2) : 138 - 148
  • [49] Nonlinear diffusion control of defect turbulence in cubic-quintic complex Ginzburg-Landau equation
    Tafo, J. B. Gonpe
    Nana, L.
    Kofane, T. C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2012, 127 (07):
  • [50] Exploding dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation in one and two spatial dimensions A review and a perspective
    Cartes, C.
    Descalzi, O.
    Brand, H. R.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (11): : 2145 - 2159