Comparison of microarray and RNA-Seq analysis of mRNA expression in dermal mesenchymal stem cells

被引:39
|
作者
Li, Junqin [1 ]
Hou, Ruixia [1 ]
Niu, Xuping [1 ]
Liu, Ruifeng [1 ]
Wang, Qiang [1 ]
Wang, Chunfang [2 ]
Li, Xinhua [1 ]
Hao, Zhongping [3 ]
Yin, Guohua [1 ]
Zhang, Kaiming [1 ]
机构
[1] Taiyuan City Ctr Hosp, Inst Dermatol, Taiyuan 030009, Shanxi Province, Peoples R China
[2] Shanxi Med Univ, Lab Anim Ctr, Taiyuan 030001, Shanxi Province, Peoples R China
[3] Gen Hosp TISCO, Dept Dermatol, Taiyuan 030003, Shanxi Province, Peoples R China
基金
中国国家自然科学基金;
关键词
Dermal mesenchymal stem cells; Differential gene expression; Mesenchymal stem cells; Microarray; RNA sequencing; PSORIASIS; SKIN; TRANSCRIPTOME; GENES;
D O I
10.1007/s10529-015-1963-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We characterized mRNA expression profiles in normal and psoriatic human dermal mesenchymal stem cells (DMSCs) to provide a reference for future investigation of differential gene expression in DMSCs. Microarray and RNA sequencing (RNA-Seq) analyses both identified 23 differentially expressed genes using both platforms. The results showed comparable upregulation or downregulation for 14/23 genes using either platform and a 100 % coincidence rate was found by real-time PCR. For all of the differentially expressed genes that were verified by real-time PCR, the coincidence rate for RNA-Seq and real-time PCR was significantly higher than that for microarray analysis and real-time PCR (83.3 vs. 37.5 %, P < 0.0001). Furthermore, RNA-Seq revealed the presence of over 2300 novel transcription tags. Relative to microarray analysis, RNA-Seq is more accurate in identifying differentially expressed genes in DMSCs.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 50 条
  • [41] Power analysis for RNA-Seq differential expression studies
    Yu, Lianbo
    Fernandez, Soledad
    Brock, Guy
    BMC BIOINFORMATICS, 2017, 18
  • [42] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [43] Power analysis for RNA-Seq differential expression studies
    Lianbo Yu
    Soledad Fernandez
    Guy Brock
    BMC Bioinformatics, 18
  • [44] Differential expression analysis for paired RNA-seq data
    Lisa M Chung
    John P Ferguson
    Wei Zheng
    Feng Qian
    Vincent Bruno
    Ruth R Montgomery
    Hongyu Zhao
    BMC Bioinformatics, 14
  • [45] Meta-analysis of microarray and RNA-Seq gene expression datasets for carcinogenic risk: An assessment of Bisphenol A
    Jung, Junghyun
    Mok, Changsoo
    Lee, Woosuk
    Jang, Wonhee
    MOLECULAR & CELLULAR TOXICOLOGY, 2017, 13 (02) : 239 - 249
  • [46] Meta-analysis of microarray and RNA-Seq gene expression datasets for carcinogenic risk: An assessment of Bisphenol A
    Junghyun Jung
    Changsoo Mok
    Woosuk Lee
    Wonhee Jang
    Molecular & Cellular Toxicology, 2017, 13 : 239 - 249
  • [47] STRA6 as a possible candidate gene for pathogenesis of osteoporosis from RNA-seq analysis of human mesenchymal stem cells
    Song, Insun
    Choi, Yong Jun
    Jin, Yilan
    Kim, Jung-Woo
    Koh, Jeong-Tae
    Ji, Hyung Min
    Jeong, Seon-Yong
    Won, Ye-Yeon
    Kim, Won
    Chung, Yoon-Sok
    MOLECULAR MEDICINE REPORTS, 2017, 16 (04) : 4075 - 4081
  • [48] Comparison of gene expression platforms: RNA-Seq, Fluidigm, and Nanostring
    Schleifman, Erica B.
    Motlhabi, Maipelo
    Cummings, Craig
    Nakamura, Rin
    Bosch, Linda
    Patel, Rajesh
    Do, An
    Watson, Andrew
    Sandmann, Thomas
    Darbonne, Walter
    McCaffery, Ian
    Peters, Eric
    Raja, Rajiv
    CANCER RESEARCH, 2015, 75
  • [49] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481
  • [50] Comparison between RNA-Seq and Affymetrix gene expression data
    Fumagalli, D.
    Haibe-Kains, B.
    Michiels, S.
    Brown, D. N.
    Gacquer, D.
    Majjaj, S.
    Salgado, R.
    Larsimont, D.
    Detour, V.
    Piccart, M.
    Sotiriou, C.
    Desmedt, C.
    CANCER RESEARCH, 2012, 72