Comparison of microarray and RNA-Seq analysis of mRNA expression in dermal mesenchymal stem cells

被引:39
|
作者
Li, Junqin [1 ]
Hou, Ruixia [1 ]
Niu, Xuping [1 ]
Liu, Ruifeng [1 ]
Wang, Qiang [1 ]
Wang, Chunfang [2 ]
Li, Xinhua [1 ]
Hao, Zhongping [3 ]
Yin, Guohua [1 ]
Zhang, Kaiming [1 ]
机构
[1] Taiyuan City Ctr Hosp, Inst Dermatol, Taiyuan 030009, Shanxi Province, Peoples R China
[2] Shanxi Med Univ, Lab Anim Ctr, Taiyuan 030001, Shanxi Province, Peoples R China
[3] Gen Hosp TISCO, Dept Dermatol, Taiyuan 030003, Shanxi Province, Peoples R China
基金
中国国家自然科学基金;
关键词
Dermal mesenchymal stem cells; Differential gene expression; Mesenchymal stem cells; Microarray; RNA sequencing; PSORIASIS; SKIN; TRANSCRIPTOME; GENES;
D O I
10.1007/s10529-015-1963-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We characterized mRNA expression profiles in normal and psoriatic human dermal mesenchymal stem cells (DMSCs) to provide a reference for future investigation of differential gene expression in DMSCs. Microarray and RNA sequencing (RNA-Seq) analyses both identified 23 differentially expressed genes using both platforms. The results showed comparable upregulation or downregulation for 14/23 genes using either platform and a 100 % coincidence rate was found by real-time PCR. For all of the differentially expressed genes that were verified by real-time PCR, the coincidence rate for RNA-Seq and real-time PCR was significantly higher than that for microarray analysis and real-time PCR (83.3 vs. 37.5 %, P < 0.0001). Furthermore, RNA-Seq revealed the presence of over 2300 novel transcription tags. Relative to microarray analysis, RNA-Seq is more accurate in identifying differentially expressed genes in DMSCs.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 50 条
  • [31] RNA-Seq UD: A bioinformatics plattform for RNA-Seq analysis
    Ramirez, Miguel
    Alejandro Rojas-Quintero, Cristian
    Enrique Vera-Parra, Nelson
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [32] Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis
    Luis A. Corchete
    Elizabeta A. Rojas
    Diego Alonso-López
    Javier De Las Rivas
    Norma C. Gutiérrez
    Francisco J. Burguillo
    Scientific Reports, 10
  • [33] Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis
    Corchete, Luis A.
    Rojas, Elizabeta A.
    Alonso-Lopez, Diego
    De Las Rivas, Javier
    Gutierrez, Norma C.
    Burguillo, Francisco J.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [34] Comparison of RNA-seq and microarray-based models for clinical endpoint prediction
    Wenqian Zhang
    Ying Yu
    Falk Hertwig
    Jean Thierry-Mieg
    Wenwei Zhang
    Danielle Thierry-Mieg
    Jian Wang
    Cesare Furlanello
    Viswanath Devanarayan
    Jie Cheng
    Youping Deng
    Barbara Hero
    Huixiao Hong
    Meiwen Jia
    Li Li
    Simon M Lin
    Yuri Nikolsky
    André Oberthuer
    Tao Qing
    Zhenqiang Su
    Ruth Volland
    Charles Wang
    May D. Wang
    Junmei Ai
    Davide Albanese
    Shahab Asgharzadeh
    Smadar Avigad
    Wenjun Bao
    Marina Bessarabova
    Murray H. Brilliant
    Benedikt Brors
    Marco Chierici
    Tzu-Ming Chu
    Jibin Zhang
    Richard G. Grundy
    Min Max He
    Scott Hebbring
    Howard L. Kaufman
    Samir Lababidi
    Lee J. Lancashire
    Yan Li
    Xin X. Lu
    Heng Luo
    Xiwen Ma
    Baitang Ning
    Rosa Noguera
    Martin Peifer
    John H. Phan
    Frederik Roels
    Carolina Rosswog
    Genome Biology, 16
  • [35] GSVA: gene set variation analysis for microarray and RNA-Seq data
    Haenzelmann, Sonja
    Castelo, Robert
    Guinney, Justin
    BMC BIOINFORMATICS, 2013, 14
  • [36] GSVA: gene set variation analysis for microarray and RNA-Seq data
    Sonja Hänzelmann
    Robert Castelo
    Justin Guinney
    BMC Bioinformatics, 14
  • [37] Comparison of RNA-seq and microarray-based models for clinical endpoint prediction
    Zhang, Wenqian
    Yu, Ying
    Hertwig, Falk
    Thierry-Mieg, Jean
    Zhang, Wenwei
    Thierry-Mieg, Danielle
    Wang, Jian
    Furlanello, Cesare
    Devanarayan, Viswanath
    Cheng, Jie
    Deng, Youping
    Hero, Barbara
    Hong, Huixiao
    Jia, Meiwen
    Li, Li
    Lin, Simon M.
    Nikolsky, Yuri
    Oberthuer, Andre
    Qing, Tao
    Su, Zhenqiang
    Volland, Ruth
    Wang, Charles
    Wang, May D.
    Ai, Junmei
    Albanese, Davide
    Asgharzadeh, Shahab
    Avigad, Smadar
    Bao, Wenjun
    Bessarabova, Marina
    Brilliant, Murray H.
    Brors, Benedikt
    Chierici, Marco
    Chu, Tzu-Ming
    Zhang, Jibin
    Grundy, Richard G.
    He, Min Max
    Hebbring, Scott
    Kaufman, Howard L.
    Lababidi, Samir
    Lancashire, Lee J.
    Li, Yan
    Lu, Xin X.
    Luo, Heng
    Ma, Xiwen
    Ning, Baitang
    Noguera, Rosa
    Peifer, Martin
    Phan, John H.
    Roels, Frederik
    Rosswog, Carolina
    GENOME BIOLOGY, 2015, 16
  • [38] Probe Region Expression Estimation for RNA-Seq Data for Improved Microarray Comparability
    Uziela, Karolis
    Honkela, Antti
    PLOS ONE, 2015, 10 (05):
  • [39] Single-cell RNA-seq of cultured human adipose-derived mesenchymal stem cells
    Xuanyu Liu
    Qinqin Xiang
    Fen Xu
    Jiuzuo Huang
    Nanze Yu
    Qixu Zhang
    Xiao Long
    Zhou Zhou
    Scientific Data, 6
  • [40] Single-cell RNA-seq of cultured human adipose-derived mesenchymal stem cells
    Liu, Xuanyu
    Xiang, Qinqin
    Xu, Fen
    Huang, Jiuzuo
    Yu, Nanze
    Zhang, Qixu
    Long, Xiao
    Zhou, Zhou
    SCIENTIFIC DATA, 2019, 6 (1)