The Symmetrical Hq-Semiclassical Orthogonal Polynomials of Class One

被引:24
|
作者
Ghressi, Abdallah [1 ]
Kheriji, Lotfi [2 ]
机构
[1] Fac Sci Gabes, Gabes, Tunisia
[2] Inst Super Sci Appl & Technol Gabes, Gabes, Tunisia
关键词
quadratic decomposition of symmetrical orthogonal polynomials; semiclassical form; integral representations; q-difference operator; q-series representations; the q-analog of the distributional equation of Pearson type; FORM; PRODUCT;
D O I
10.3842/SIGMA.2009.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the quadratic decomposition and duality to classify symmetrical H-q-semiclassical orthogonal q-polynomials of class one where H-q is the Hahn's operator. For any canonical situation, the recurrence coefficients, the q-analog of the distributional equation of Pearson type, the moments and integral or discrete representations are given.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] LINEARIZATION OF THE PRODUCT OF SYMMETRICAL ORTHOGONAL POLYNOMIALS
    MARKETT, C
    CONSTRUCTIVE APPROXIMATION, 1994, 10 (03) : 317 - 338
  • [32] ON A CLASS OF ORTHOGONAL POLYNOMIALS
    Gavrea, I
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (03): : 95 - 101
  • [33] ORTHOGONAL POLYNOMIALS IN SYMMETRICAL DOMAINS OF RM
    CNOPS, J
    DIFFERENTIAL EQUATIONS //: PROCEEDINGS OF THE EQUADIFF CONFERENCE, 1989, 118 : 145 - 155
  • [34] Comparative asymptotics for discrete semiclassical orthogonal polynomials
    Dominici, Diego
    BULLETIN OF MATHEMATICAL SCIENCES, 2023, 13 (01)
  • [35] A matrix approach for the semiclassical and coherent orthogonal polynomials
    Garza, Lino G.
    Garza, Luis E.
    Marcellan, Francisco
    Pinzon-Cortes, Natalia C.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 459 - 471
  • [36] A Survey On D-Semiclassical Orthogonal Polynomials
    Ghressi, Abdallah
    Kheriji, Lotfi
    APPLIED MATHEMATICS E-NOTES, 2010, 10 : 210 - 234
  • [37] On semiclassical orthogonal polynomials via polynomial mappings
    Castillo, K.
    de Jesus, M. N.
    Petronilho, J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1801 - 1821
  • [38] The semiclassical Sobolev orthogonal polynomials A general approach
    Costas-Santos, R. S.
    Moreno-Balcazar, J. J.
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (01) : 65 - 83
  • [39] ON CHARACTERIZATIONS OF DUNKL-SEMICLASSICAL ORTHOGONAL POLYNOMIALS
    Sghaier, M.
    Hamdi, S.
    MATEMATICHE, 2022, 77 (01): : 67 - 94
  • [40] Second structure relation for semiclassical orthogonal polynomials
    Marcellan, Francisco
    Sfaxi, Ridha
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (02) : 537 - 554