BERRY-ESSEEN BOUNDS FOR PROJECTIONS OF COORDINATE SYMMETRIC RANDOM VECTORS

被引:4
|
作者
Goldstein, Larry [1 ]
Shao, Qi-Man [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Normal approximation; convex bodies; CENTRAL LIMIT PROBLEM;
D O I
10.1214/ECP.v14-1502
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a coordinate symmetric random vector (Y-1, ... , Y-n) = Y is an element of R-n, that is, one satisfying (Y-1, ... ,Y-n) =(d) (e(1)Y(1), ... , e(n)Y(n)) for all (e(1), ... , e(n)) is an element of {-1,1}(n), for which P(Y-i = 0) = 0 for all i = 1,2, ... , n, the following Berry Esseen bound to the cumulative standard normal Phi for the standardized projection W-theta = Y-theta/nu(theta) of Y holds: sup(x is an element of R) vertical bar P(W-theta <= x) - Phi(x) vertical bar <= 2 Sigma(n)(i=1)vertical bar theta(i)vertical bar E-3 vertical bar X-i vertical bar(3) + 8.4E(V-theta(2) - 1)(2), where Y-theta = theta . Y is the projection of Y in direction theta is an element of R-n with parallel to theta parallel to = 1, nu(theta) = root Var(Y-theta), X-i = vertical bar Y-i vertical bar/nu(theta) and V-theta = Sigma(n)(i=1) theta X-2(i)i(2). As such coordinate symmetry arises in the study of projections of vectors chosen uniformly from the surface of convex bodies which have symmetries with respect to the coordinate planes, the main result is applied to a class of coordinate symmetric vectors which includes cone measure l(p)(n) on the l(p)(n) sphere as a special case, resulting in a bound of order Sigma(n)(i=1) vertical bar theta(i)vertical bar(3).
引用
收藏
页码:474 / 485
页数:12
相关论文
共 50 条
  • [41] Berry-Esseen bounds for the percentile residual life function estimators
    Zhao, Mu
    Jiang, Hongmei
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 104 : 133 - 140
  • [42] ON NON-UNIFORM BERRY-ESSEEN BOUNDS FOR TIME SERIES
    Jirak, Moritz
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2015, 35 (01): : 1 - 14
  • [43] Berry-Esseen bounds and Cramér type large deviations for eigenvalues of random matrices.
    CHEN Lei
    GAO FuQing
    WANG ShaoChen
    [J]. Science China Mathematics, 2015, 58 (09) : 1959 - 1980
  • [44] Sharpened upper bounds for the absolute constant in the Berry-Esseen inequality for mixed Poisson random sums
    Korolev, V. Yu.
    Shevtsova, I. G.
    [J]. DOKLADY MATHEMATICS, 2010, 81 (02) : 180 - 182
  • [45] Berry-Esseen bounds for density estimates under NA assumption
    Liang, Han-Ying
    Baek, Jong-Il
    [J]. METRIKA, 2008, 68 (03) : 305 - 322
  • [46] ON BERRY-ESSEEN THEOREM
    FELLER, W
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1968, 10 (03): : 261 - &
  • [47] Sharpened upper bounds for the absolute constant in the Berry-Esseen inequality for mixed Poisson random sums
    V. Yu. Korolev
    I. G. Shevtsova
    [J]. Doklady Mathematics, 2010, 81 : 180 - 182
  • [48] Berry-Esseen bounds for standardized subordinators via moduli of smoothness
    Adell, Jose Antonio
    Lekuona, Alberto
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2007, 20 (02) : 221 - 235
  • [49] The Berry-Esseen Bounds for Sample Rescaled Poly-Variograms
    Wang, Wensheng
    Wu, Ka-Ho
    Hwang, Kyo-Shin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (17) : 3639 - 3652
  • [50] NEW BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF BINOMIAL POINT PROCESSES
    Lachieze-Rey, Raphael
    Peccati, Giovanni
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 1992 - 2031